期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:150
Bivariate Conway-Maxwell-Poisson distribution: Formulation, properties, and inference
Article
Sellers, Kimberly F.1,2  Morris, Darcy Steeg2  Balakrishnan, Narayanaswamy3 
[1] Georgetown Univ, Dept Math & Stat, Washington, DC 20057 USA
[2] US Bur Census, Ctr Stat Res & Methodol, Washington, DC 20233 USA
[3] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
关键词: Bivariate distribution;    Dispersion;    Dependence;    Conway-Maxwell-Poisson (COM-Poisson);   
DOI  :  10.1016/j.jmva.2016.04.007
来源: Elsevier
PDF
【 摘 要 】

The bivariate Poisson distribution is a popular distribution for modeling bivariate count data. Its basic assumptions and marginal equi-dispersion, however, may prove limiting in some contexts. To allow for data dispersion, we develop here a bivariate Conway-Maxwell-Poisson (COM-Poisson) distribution that includes the bivariate Poisson, bivariate Bernoulli, and bivariate geometric distributions all as special cases. As a result, the bivariate COM-Poisson distribution serves as a flexible alternative and unifying framework for modeling bivariate count data, especially in the presence of data dispersion. Published by Elsevier Inc.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2016_04_007.pdf 509KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:0次