期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:106
Information, data dimension and factor structure
Article
Jacobs, Jan P. A. M.1 
[1] Univ Groningen, Fac Econ & Business, NL-9700 AV Groningen, Netherlands
关键词: Kullback-Leibler numbers;    Information;    Factor structure;    Data set dimension;    Dynamic factor models;    Leading index;   
DOI  :  10.1016/j.jmva.2011.11.003
来源: Elsevier
PDF
【 摘 要 】

This paper employs concepts from information theory for choosing the dimension of a data set. We propose a relative information measure connected to Kullback-Leibler numbers. By ordering the series of the data set according to the measure, we are able to obtain a subset of a data set that is most informative. The method can be used as a first step in the construction of a dynamic factor model or a leading index, as illustrated with a Monte Carlo study and with the US macroeconomic data set of Stock and Watson [20]. (C) 2011 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2011_11_003.pdf 278KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:0次