期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:99
Sample covariance shrinkage for high dimensional dependent data
Article
Sancetta, Alessio
关键词: sample covariance matrix;    shrinkage;    weak dependence;   
DOI  :  10.1016/j.jmva.2007.06.004
来源: Elsevier
PDF
【 摘 要 】

For high dimensional data sets the sample covariance matrix is usually unbiased but noisy if the sample is not large enough. Shrinking the sample covariance towards a constrained, low dimensional estimator can be used to mitigate the sample variability. By doing so, we introduce bias, but reduce variance. In this paper, we give details on feasible optimal shrinkage allowing for time series dependent observations. (C) 2007 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2007_06_004.pdf 225KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次