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Abstract

For high dimensional data sets the sample covariance matrix is usually unbiased but noisy if the sample
is not large enough. Shrinking the sample covariance towards a constrained, low dimensional estimator can
be used to mitigate the sample variability. By doing so, we introduce bias, but reduce variance. In this paper,
we give details on feasible optimal shrinkage allowing for time series dependent observations.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

This paper considers the problem of estimating the variance covariance matrix of high di-
mensional data sets when the sample size is relatively small and the data exhibit time series
dependence. The importance of estimating the covariance matrix in these situations is obvious.
The number of applied problems where such an estimate is required is large, e.g. mean—variance
portfolio optimization for a large number of assets, generalized method of moments estimation
when the number of moment equations is large, etc. However, the estimator based on the sample
covariance can be noisy, it can be difficult to find its approximate inverse, hence might perform
poorly.

To mitigate this problem, the sample covariance matrix can be shrunk towards a low dimensional
constrained covariance matrix. Recently, this approach has been successfully studied by Ledoit
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and Wolf [6]. These authors assume iid observations, a certain cross-dependence structure for the
vector of observations and shrink towards a matrix proportional to the identity. Related references
can be found in their work. The idea is to find an optimal convex combination of the sample
covariance and the constrained covariance matrix. The parameter defining shrinkage depends on
unknown quantities and needs to be estimated consistently. Intuitively, the problem is the usual
one of balancing the bias and the variance of the estimator to obtain lower mean square error.

The goal of the present paper is to show that covariance matrix shrinkage can be used in quite
general situations, when data are time dependent and are not restricted in their cross-dependence
structure. To account for time dependence, the estimator based on iid observations has to be
slightly changed. However, an interesting property of the estimator is that accounting for time
series dependence is not always crucial. We will make this statement more precise in our simulation
study. Extending the theory to more general situations is important when dealing with real data.

The results derived here are weak, as they only hold in probability versus L, consistency of
Ledoit and Wolf [6]. However, we show that the constrained covariance matrix does not need to be
proportional to the identity and can be chosen more generally. In Ledoit and Wolf [5] a constrained
covariance matrix based on a one factor model was suggested, assuming that the cross-sectional
dimension stays fixed. Our framework covers the case when time and cross-sectional dimensions
may grow at the same rate. However, this requires that the constrained covariance matrix is chosen
appropriately. In this respect, while the results of this paper cover a lot of cases of interest not
covered by Ledoit and Wolf [6], the two papers are still complementary. Details will be given in
due course.

The plan of the paper is as follows. Section 2 states the problem and the suggested solution.
Section 3 contains a Monte Carlo study of the small sample performance of shrinkage when data
series are dependent. Section 4 proves that the procedure is consistent.

We introduce some notation. Given two sequences a := a,, and b := b,,, a<b, means that there
is a finite absolute constant ¢ such that a <cb; a < b means that a<<h and b<a. We may also use
the O and o notation as complement and substitute of the above symbols to describe orders of
magnitude, which ever is felt more appropriate. Given two numbers a and b, the symbols a V b
and a A b mean, respectively, the maximum and minimum between a and b. If A is a countable
set, #A stands for its cardinality. Finally, for a matrix A, A;; stands for the (i, j)th entry.

2. Estimation of the unconditional covariance matrix

Suppose (Y;);¢q1,....7) are random variables with values in RY. For simplicity assume the
variables are mean zero. The covariance matrix is defined as £ := 7! Zthl EY;Y/ and under
second-order stationarity this reduces to X := EY;Y/. Then, Sr o= Zszl Y:Y]/T is a sample
estimator for 2. In some cases, we may have that N grows with 7. If N/T — 0 the sample
covariance matrix 37 is consistent (under an appropriate metric), but the rate of convergence
can be arbitrarily slow, moreover, Sr might be singular in finite samples. If N < T, S is also
inconsistent. This paper considers the case where N/T — ¢ € [0, oo], so that we might even
have T = o (N).

To be more precise, we define the Frobenious norm in order to measure the distance between
matrices.

Definition 1. Suppose A is a square N-dimensional matrix. The Frobenious norm is defined as

|All, := +/Trace (AA’).
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Remark 1. Note that ||A||% = ZIN=1 Z;V:] A?j. Moreover, when A is symmetric, ||A||% =

ZZNZ A%, where /3, ..., 24y are the eigenvalues of A. Ledoit and Wolf [6] suggest standard-
ization by N, so that the Frobenious norm of the identity matrix is always one independently of
the dimension. This will not be done here.

To mitigate the problem that HiT - ZH2 is large when N is relatively large, it is suggested

that we use a shrunk estimator £z () = oF + (1 —w) iT, where o € [0, 1] and F is a con-
strained version of 2. In general, F is chosen to impose stringent restrictions on the unconditional
covariance matrix so that F' # X. Note that F is usually unknown and need to be replaced by
an estimator. However, in Theorem 1, we will show that asymptotically, this does not affect the
argument if the estimator is low dimensional. On the other hand, ﬁT is unbiased for X, but very
noisy, especially in finite sample, where we may even have N > T. The shrunk estimator Tris

A - 2 A 2
preferred to X7 if there exists an o € (0, 1] such that E HET (o) — 2”2 <[E HET — 2”2. As done

in Ledoit and Wolf [6], we consider the expected squared Frobenious norm and minimize it with
respect to .

Proposition 1. Suppose Sr (o) = oF + (1 —a) ﬁr. The optimal choice of o. under the expected
squared Frobenious norm is

R 2

o]
aozﬁ/\l_argaénén [EHZT ZH (H

E|r 24

where

2 ~
= T wis),

I<i,j<N
and all relevant moments are assumed to exist.

The solution shows that we might reduce the error under the Frobenious norm even if Sris
biased (recall that F # X) because we reduce its variance. This is the usual bias—variance trade-off
in the mean square error of the estimator. Unfortunately, Y7 (ap) is based on unknown quantities,
but X can be replaced by its unbiased estimator Sr,and F by an unbiased estimator, say Fr.
Clearly, Fr should have low variance in order for the procedure to work well in practice. The
ch01ce of shrmkage parameter changes if we replace in (1) the unfeasible estimator X7 (o) with
aFr + (1 — o) $r.In particular, from the proof of Proposition 1, deduce that

~ 2 A ~
[t 2} Bre cn . )

E

- — Al
F—ZTH
2

= arg mm E HocFT + (1 —w ZT — ZH 2)
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under regularity conditions. We shall show that under suitable conditions on Fr, o and o are
asymptotically equivalent. For this reason, we will just consider o as the quantity to estimate.

A A

This is reassuring because estimation of Cov (Ei i1 Fi j> could be a nontrivial exercise. Moreover,
note that

E

T
A 2 1
Sy —2”2 - ¥ Var<?;:y,iy,j> 3)

I1<i,j<N

so that when the observations are dependent, we should estimate the covariance terms Cov (Y,i Yii,
Ysi Ysj). Define

T
~ 1
Xrij = T E (YY),
=1

T—s

~ 1 ~ ~
Irij(s):= T Z (Yt,th,j - Zr,ij) (Yt+s,in+s,j - ET,[j) ,
t=1
T—1
b “ “
I7=Trij©+2> K(s/b)I74j(s). b>0, (4)

s=1
where k (s) is some function decreasing to zero and continuous in the neighborhood of zero
and b > 0 is a smoothing parameter. With the above notation, under stationarity conditions, an

. . ~b .
estimator of (3) is given by 7! > <i,j<n I'r,ij- Then we define the sample estimator

~b
—1
. T Zlgi,jgNFT,ij
oar = 3
lz

and will show that it is asymptotically equivalent to use either &7 or o, where o is as in (1 ). To
make this statement formal, we require some conditions. Comments about the following technical
conditions are deferred to the next subsection.

iT_ﬁT

~ 2 ~
Condition 1. (1) E ‘FT,ij —Fj| =0 (T*I) (Vi, j) where F = EFr;

@ #{1<i, j<N : Fy # Fro; | SNP. p € 10,2);

@) IF =23 = N7,y > 0;

(4) e = €7 := N/T such that ¢,  and y satisfy
(61/2Nﬁ71/2 v 61/2N(1+«,)/2) =0 (N).

Condition 2. Supposeu, v € {1, 2, 3, 4}. Consider the v and v tuples (i1, ..., i), (S1,...,S,) €
N“and (ji,..., ju), (1, ..., t) € NV suchthat s; < --- <s, <5, +r <8y < -+ <1, for some
r € N. Then, there exists a sequence (0,),cn, Where 0, <r~% with a > 3 such that

|Cov (Yayjy -+ Yoo Ysrirs -+ Youia)| <O
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Condition 3. In (4) above,
(1) x : R — Ris adecreasing positive function, continuous from the right with left-hand limits
such that limg_, g+ x (s) = 1 and fooo [k (s)]? ds < oo.
(2) b — oo such that b = o (T'/?).

Condition 4. (Y;),cn is an N-dimensional vector of nondegenerate random variables with finite
and stationary eighth moment.

Hence, we have consistency of the estimated shrinkage parameter and the feasible shrinkage
estimator.

Theorem 1. Under Conditions 1-4,
(D

[N 7] o —a0) = 0 .

where og < eN'™V = o (1) is as in ( 1);

2
[eNl_V]_l (2 — ot0) = 0 (1),

where oy =< eN'"" =0 (1) is asin (2);

3

H&TﬁT + (1 — &T) S — 2”2 = HotoF + (-0 2y — 2”2 {1 + 0, (el/zN(1_7’)/2>} .

Below, we provide comments about Theorem 1, and in the subsequent subsection, we remark
on the technical conditions of the paper.

2.1. Remarks on Theorem 1

Theorem 1 gives a rate of convergence in probability uniformly in

HOC()F + (1 - ao)iT — 2’ )’
where ¢!/2NU1=7/2 . ( by Condition 1(4). Note that ¢ — 0 is not required, but it is allowed.
We may also have e — oo as long as Condition 1 is satisfied (remarks about this condition can be
found in the next subsection). Note that Theorem 1 is not concerged with consistAency of 27, but
only assures that with high probability, the shrunk estimator &7 Fr + (1 — &7) X7 will perform

better than iT under the Frobenious norm.

Moreover, if F is full rank, then ooF + (1 — o) S is invertible when o > 0 even though Sris
rank deficient. This intuition can be made formal in the special case F = vly, where Iy is the
identity matrix and v a positive constant. Then,

det (owIN + (-0 — uN) = (1 — o)V det (iT - ((21—_02;)) [N)
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and 7 has arbitrary eigenvalue o := (4 — av) / (1 — o) >0 (because ris positive semidefi-
nite), implying 2 = (1 — o) w + oav > 0 (which is the corresponding eigenvalue of the shrunk
estimator). Therefore, the minimum eigenvalue of this shrunk estimator is always larger than the
one of the sample covariance matrix. We now turn to specific comments regarding the conditions
of the paper.

2.2. Remarks on the technical conditions

2.2.1. Condition 1

Theorem 1(3) holds even if in Condition 1(1) we replace L, convergence with O, (T’l/ 2)
convergence and we allow for f = 2 in Condition 1(2). However, part (2) in Theorem 1 requires
the present slightly stronger conditions. In practice we might only be interested in knowing that
the shrunk estimator performs asymptotically as well as the unfeasible optimal oo F + (1 — o) ST,
in which case milder conditions can be used.

As just mentioned, part (1) in Condition 1 implies that IC"T, ij is Lo root-n consistent. Part (2)

says that I:“T and F are constrained so that there are at most O (N B ) elements to be estimated in
F, with the other elements fixed and known. The simplest way to achieve this is by setting at most

o (N B ) elements to be nonzero in F and estimate them using Fr.We give some examples.

Example 1. Suppose F := vly where v = ZlNzl %;i/N. Then, Fr = 01y where v =
ZlN= 1 i,-iT /N. In this case, iT shrinks all the off diagonal elements of ﬁT towards zero and
the diagonal towards the mean of its diagonal elements, in both cases by a factor (1 — «). In this
case, we need (el/le/2 \% eN) =0 (NV). This is the estimator used in Ledoit and Wolf [6], but
with different restrictions on .

Example 2. Suppose the data can be divided in groups and we constraint the correlation between
groups to be zero. Controlling for the number of groups and elements in each group would allow
us to satisfy Condition 1. Many examples, also based on factor models, can be generated once we
restrict between groups correlations to be zero. Details can be left to the interested reader.

Part (3) implies that F # X, and y quantifies how different ' and X are under the Frobenious
norm. Part (4) is the crucial condition of the paper and relates the coefficients f and y together
with the ratio e := N/T. A simple example shows that these conditions do not define an empty
set.

Example 3. Suppose F and Fr are diagonal, then § = 1. Suppose y > 1, which is surely satisfied
if, for example, ||Z||% = N”. Then, Condition 1(4) is satisfied for e — ¢ > 0 and we may even
have e7 — 00 at, e.g. a logarithmic rate.

It is interesting to note that if e — ¢ > 0, the result of the paper does not cover the case § = 1
(i.e. F and Fr are diagonal) and X is diagonal as well. In this case, we do require ez — 0. In
practice, we would often use shrinkage for a matrix X such that ¥ and F' are different (i.e. y > 1)
because the number of entries to be estimated in F is relatively small (e.g. f < %). In this case
er — ¢ > 0is allowed.

It is useful to compare with the results in Ledoit and Wolf [6] and in particular with their
Assumption 2. We note that a necessary condition for Assumption 2 in Ledoit and Wolf is || ||% =
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O (N).We will show this below. Based on another restrictive assumption on the higher order cross-
dependence structure, Ledoit and Wolf show that using F proportional to the identity allows for
successful shrinkage. Theorem 1 does not cover this case, though it is quite restrictive, as this
would imply f = y = 1 and e — ¢ > 0, as remarked before. In this case, we require ez — 0.
This is the price one has to pay for lifting the iid condition and restrictive conditions on the
higher order cross-dependence structure of the data (Assumption 3 in Ledoit and Wolf). Clearly,
the results in Ledoit and Wolf do not allow for, say IIZII% = N2, which is covered by this paper.
Hence, the present result and the one in Ledoit and Wolf are somehow complementary. We remark
that what makes the approach of Ledoit and Wolf work is that under their conditions, they can
show that (1 — F) HZT Hi = 0, (N) (they actually show it in L) while HET - 2”2 = 0, (N).
This cannot be done under the present, more general conditions, and a different route had to be
used.

To see that Assumption 2 in Ledoit and Wolf implies || 2 ||% = O (N), write X = PAP’ where A
is the matrix of eigenvalues and P is the matrix of orthonormal eigenvectors. Define X, := P'Y;.
Assumption 2 in Ledoit and Wolf says that ZlN:l EX fi = O (N) (using our notation). By Jensen
inequality, this implies

0 (N) = ﬁ: ExS > ([EX,2i>4 = i A = Trace (A%). )

i=1 i=1 i=1

By the properties of L, norms, E|Z]| < ([E |Z |2)1/ * for any random variable Z. Hence, setting

zZ = Aizl- and taking expectation with respect to i using the measure with mass 1/N at each
i=1,...,N,deduce

Trace (A2> . N ) . N A 12 Trace <A4> 2
N =(N §|Aii| ) < (N ;|Aii| ) =\—~
(6)
Squaring (6) and multiplying it by N, (5) together with Remark 1 give

O (N) = Trace (A4) >N [Trace (A2>]2 — N! (||2||§)2 :
so that
IZ13 =0 N).

Note that Assumption 3 in Ledoit and Wolf also imposes a further restriction on the cross-sectional
dependence of the data (not used here), which is satisfied by a restricted class of random variables
like Gaussian random variables.

2.2.2. Condition 2

Condition 2 can be verified by deriving the weak dependence coefficients of Doukhan and
Louhichi [4]. Condition 2 is satisfied by a wide range of time series models. It is weaker and much
easier to derive than strong mixing, and Doukhan and Louhichi [4] give important examples of
processes satisfying conditions of this type. Ledoit and Wolf [6] assume independence.



956 A. Sancetta / Journal of Multivariate Analysis 99 (2008) 949—-967

2.2.3. Condition 3

Condition 3 is standard for the estimation of the spectral density at frequency zero. Note that
there are other alternatives for the estimation of the variance of the sample mean of dependent
observations: block bootstrap, sieve bootstrap, subsampling, etc. (see [3,7] for reviews). Clearly
any of these other approaches could be used as an estimator of (3) in place of (4).

2.2.4. Condition 4

From the proofs it is evident that stationarity is mainly used to simplify the notation in the
definition of I 7,ij (5). Under suitable conditions, we could allow (Y;),cn to be heterogeneous
and interpret X to be the arithmetic average of ([EY, ) rell T} and similarly for other quantities
that will be defined in the next section. Details can be left to the interested reader.

3. Simulation study

Ledoit and Wolf [6] carry out a simulation study to verify the small sample properties of their
estimator. Theorem 1 says that we need to account for time series dependence. However, it is
interesting to see what is the effect of dependence in practice. In the simulation examples we
carry out below we can see that there is no substantial gain unless there is some moderate time
series dependence across all the (i, j) terms. Here is an explanation for this. To keep it simple,
suppose that in Condition 1 y = 1 and € = 1. Then, by Lemma 2

T i jenVar (T71/2 PO Yrinj)

T
o= S — =(NT)"" Y Var<T—1/2ZY,iY,,-),
t=1

[EHF—ZTH2 1<ij<N

which is the average over the variances of the (i, j) sample covariances. Hence, if
T—1
Z Cov (Ylinj, Yt,th,j) ~0
1=2

for many i and j’s, then, averaging over (i, j) would considerably decrease the impact of de-
pendence on the estimator. Hence, optimal shrinkage can be thought to be somehow robust to
departures from independence, especially in the positive dependent case. In fact, (2) implies that
if 37 and Fr are positively correlated, a7 is upward biased for (2) in finite samples, and not
accounting for positive dependence might counterbalance this bias.

The Monte Carlo study is carried out as follows. Simulate several sequences of vectors and
compute their covariance using the covariance shrinkage proposed here. In particular we choose
the constrained estimator to be as in Example 1. This way, results can be compared with the
shrunk estimator used for iid observations and proposed by Ledoit and Wolf [6]. We want to
verify if in practice we should worry too much about weak dependence. For all the simulated

~ 2 ~ ~ ~
data, we compute [ HZ’; (&T) — 2”2 where 27, (o) := aFr + (1 — o) X7, and as usual X is the

true covariance matrix. We also compute the percentage relative improvement in average loss
(PRIAL), i.e.

PRIAL (2} (&r)) = 100




A. Sancetta / Journal of Multivariate Analysis 99 (2008) 949—-967 957

The expectations are computed (approximated) using 1000 Monte Carlo replications, and standard
errors are also computed.

The smoothing function in Condition 3 is chosen to be « (s) = (1 — |s|) I{s| <1}, which is the
Bartlett kernel. For b = 1 it corresponds to the case when no time series dependence is accounted
for, as the covariance terms all drop. We consider the cases b = 1, 5, so that in the second case,
fourth-order autocovariance terms are retained in the estimation of I';, [ When b =1, we just
recover the exact estimator considered in Led01t and Wolf [6]. For comparlson reasons, we also
compute Z* () foraa =0, 1,1ie. ZT and Fr.

Details on the simulated data are as follows. The sampleis 7 = 40 froman N = 20 dimensional
vector autoregressive process (VAR) of order one. The matrix of autoregressive coefficients is
diagonal with diagonal entries in [0, .8], and [.5, .8] in a second simulation example. These
coefficients were obtained by simulating an N-dimensional vector of [0, .8] and [.5, .8] uniform
random variables. The innovations are iid Gaussian vectors with diagonal covariance matrix,
whose coefficients were simulated from a lognormal with mean one and scaling parameter ¢ =
.25,.5, 1,2 (o is the standard deviation of the logs of the observations). Different values of o
allows us to assess changes in performance as the diagonal entries becomes less concentrated
around their mean equal to one. As ¢ increases, ﬁr becomes noisier and more biased for X so
that shrinkage is less justified. Results show that when the scaling parameter o is equal to 1, the
PRIAL is quite small becoming negative when ¢ = 2. We also report the same results when
g = 1but N = 40, 80, 160 to see if there is a relative improvement, which indeed happens to
be substantial, despite the increased variability and bias in Fr. Simulations carried out by the
author, but not reported here, show that a similar improvement is obtained when ¢ = 2, leading
to positive PRIAL as soon as N >40 (i.e. N/T >1). A larger N implies that X7 is noisier, and
we can argue more strongly for shrinkage despite the bias in Fr. Finally, in a third simulation,
we briefly consider the case of nondiagonal true covariance matrix. To this end we use the same
VAR model with autoregressive coefficients in [0, .8] and [.5, .8], but we set the covariance matrix
of the innovations to be one along the diagonal and .25 off the diagonal. In this case, we only
consider N = 20, 40. The results seem to be representative of the behavior of the covariance
shrinkage estimator in the presence of exponentially decaying time series dependence. Note that
for a VAR(1), Condition 2 is satisfied for any @ > 0. All the results are reported in Table 1, Panels
A, B, C and D. The first two columns in Table 1 refer to the shrunk estimqtor with estimated o,
the third and fourth column refer to the estimator with fixed « = 0, 1, i.e. X7 and ﬁT, while the
last two columns give values of d7.

Remark 2. For the experimental results in Panel A and B we have § = y = 1, using the notation
in Condition 1. By Theorem 1, the estimator might not be consistent, in this case, unless ¢ — 0.
For the experiments in Panel C and D, we have § = 1 and y = 2 and the estimator is consistent
also for e — ¢ > 0.

As we mentioned above, when time dependence is moderate across all the series (Panel B
and D), accounting for time dependence can be advantageous. However, the difference between
the estimators based on b = 5 and 1 decreases as shrinkage becomes less desirable. The results
also suggest that for both estimators, the PRIAL increases in N/T. Simulations carried out by
the author, but not reported here confirm this finding in a variety of situations, like the one
contemplated in Ledoit and Wolf [6, Fig. 6]. If there is moderate time dependence, accounting for
it in the estimation could be advantageous even when T is small and N large (e.g. N/T = 80/10)
despite noise in estimation of I’ T
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Table 1
Shrunk estimator Estimated value of alpha
Estimated alpha Fixed alpha
b=5 b=1 Alpha =0 Alpha =1 b=5 b=1
Panel A. Diagonal covariance, VAR coefficients in [0,0.8]
N =20
Sigma = .25 MEAN 9.9 11.6 353 9.2 0.72 0.61
SE 0.12 0.16 0.33 0.02 0.005 0.004
PRIAL (%) 71.9 67.3 0.0 74.1
Sigma =.5 MEAN 18.2 19.4 39.2 22.0 0.60 0.51
SE 0.19 0.23 0.42 0.02 0.005 0.004
PRIAL (%) 53.5 50.4 0.0 43.8
Sigma = 1 MEAN 439 43.5 50.1 94.2 0.36 0.29
SE 0.56 0.59 0.80 0.04 0.004 0.003
PRIAL (%) 12.5 13.2 0.0 —87.9
Sigma=2  MEAN 71.0 68.7 63.1 301.2 0.17 0.13
SE 1.54 1.57 1.70 0.08 0.003 0.002
PRIAL (%) —12.5 -89 0.0 —377.3
N =40
Sigma = 1 MEAN 76.7 79.4 128.4 119.6 0.49 041
SE 0.53 0.63 1.20 0.04 0.003 0.003
PRIAL (%) 40.2 38.2 0.0 6.9
N =380
Sigma = 1 MEAN 117.0 123.0 284.6 154.1 0.60 0.53
STD 0.47 0.63 1.74 0.03 0.003 0.003
PRIAL (%) 58.9 56.8 0.0 45.8
N =160
Sigma = 1 MEAN 574.4 665.7 1796.1 634.2 0.63 0.52
STD 3.04 4.84 11.07 0.08 0.003 0.002
PRIAL (%) 68.0 62.9 0.0 64.7

Panel B. Diagonal covariance, VAR coefficients in [0.5,0.8]

N =20

Sigma = .25 MEAN 19.6 31.2 82.1 11.6 0.66 0.46
SE 0.36 0.51 0.79 0.05 0.004 0.003
PRIAL (%) 76.1 62.0 0.0 85.9

Sigma =.5 MEAN 34.2 443 90.2 314 0.59 0.41
SE 0.47 0.65 0.99 0.06 0.004 0.003
PRIAL (%) 62.1 50.9 0.0 65.3

Sigma =1  MEAN 82.3 85.5 109.2 136.2 0.40 0.28
SE 1.00 1.18 1.65 0.09 0.004 0.003
PRIAL (%) 24.7 21.8 0.0 —24.6

Sigma =2  MEAN 131.7 125.7 120.1 424.7 0.21 0.14
SE 2.53 2.61 2.92 0.15 0.003 0.002

PRIAL (%) -9.6 —4.7 0.0 —253.7
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Table 1 (continued)

N =40

Sigma = 1 MEAN 143.8 169.9 293.2 174.8 0.50 0.35
SE 1.12 1.64 2.69 0.09 0.003 0.002
PRIAL (%) 50.9 42.1 0.0 40.4

N =280

Sigma = 1 MEAN 240.4 318.9 713.6 234.8 0.57 0.41
STD 1.59 2.58 4.58 0.08 0.003 0.002
PRIAL (%) 66.3 55.3 0.0 67.1

N =160

Sigma = 1 MEAN 1082.7 1647.1 3991.0 832.5 0.59 0.41
STD 8.51 13.81 23.06 0.18 0.002 0.002
PRIAL (%) 72.9 58.7 0.0 79.1

Panel C. Nondiagonal covariance, VAR coefficients in [0,0.8]

Sigma =1

N =20
MEAN 24.3 24.5 33.4 449 0.43 0.37
SE 0.23 0.24 0.39 0.02 0.004 0.003
PRIAL (%) 27.1 26.6 0.0 —34.6

N =40
MEAN 92.7 93.8 131.4 177.8 0.42 0.36
SE 0.72 0.73 1.20 0.04 0.003 0.003
PRIAL (%) 29.4 28.6 0.0 —35.3

Panel D. Nondiagonal covariance, VAR coefficients in [0.5,0.8]

Sigma =1

N =20
MEAN 52.6 55.8 77.8 82.6 0.44 0.31
SE 0.49 0.59 0.93 0.05 0.004 0.003
PRIAL (%) 32.3 28.2 0.0 —6.2

N =40
MEAN 206.9 220.9 309.8 335.8 0.42 0.30
SE 1.64 1.99 3.12 0.10 0.004 0.003
PRIAL (%) 33.2 28.7 0.0 -84

4. Asymptotics for covariance shrinkage estimators

Proof of Proposition 1. Differentiating with respect to o,

N 2
d[E”ocF—i— (1 —o)Sr —2”2

do
=2 Z E (OtFij + (-0 — 2ij) (Fij - iT,ij)

1<i,j<N
~ 2 ~ ~
=2 Z olE (Fij _ET,ij> + Cov (Fij’zT,ij> — Var (2T,ij) s
1<i,j<N
which, imposing the constraint, implies the result because Cov (Fi s ﬁlT,,-/) = 0, as F is

nonstochastic. [
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We introduce some notation.

Notation 1. I';; (s):=Cov (Y, Ys j, YitsiYits,j)s Triji=li; ) +2 12 (1 —s/T) [ij (s).
Moreover, ||. . .III,V[p is the L, norm (p = 1, 2).

The following lemmata are used to prove Theorem 1.
Lemma 1. Under Conditions 2—4,

2
E E” =
2

and

~b ~ 2
el X T —[EHET—ZHZ‘zo(eN).
1<i,j<N

Proof. By Condition 2,

E

2
7|
2

1 T
> <? 3 y,,,-yt,,.)
1<i,j<N =1

N2
2— max Z Cov(Ytl,thl,jvYtz,thz,j)

T2 1<i,j<N
I<n<n<T

N

NZ

By Condition 4, Y; ;Y; ; is nondegenerate (Vi, j) hence we must also have

2
Z Var( ZY,,Y”) ?1<m1n VaV(Y[’jY;,j)XEN,

1<i,j <N i<

implying the first part of Lemma 1. For arbitrary, but fixed i, j, define S;:=(1 —E) Y;;Y; ;.
Condition 2 implies (e.g. [4]),

o
> ES:Sitr Si4rsSiprs < Y (r + 1?0, < oo, (8)

I<r<r<r3<oo r=1

which implies that the fourth mixed cumulant of (S,, Str1> St4rys St+r3) is summable in
(ri,r2, r3). Noting

1< r
Z v o\ _1Tij
Var <? o Yt,lYt,/> = T

by Condition 3 and (8), we deduce,

,=o()

max HF — I,
1<ij<n I T ol

using Theorem 1 in Andrews [2] and the results in Anderson [1, Chapter 8]. [
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A 2
We give the rate of growth of E H F—-2xr H2

Lemma 2. Under Conditions 1, 2 and 4
L2 ) . 2 .
E HF - zTH2 —|F -3 +E HZT _ 2H2 = N7,

2
i

A |12 & $
E|lF-2r| = Y [(F2-2FyESry +23) + (Er; - 23]
1<i,j<N

Proof. Adding and subtracting X

2 A 2
IF -z +E|Er - |
= N’

because, by Lemma 1,
. 2
[EHZ —EH — 0 (eN) =0 (N7),
T ) (eN) =0 (N7)

because Condition 1(4) gives €!/2NU*7/2 = o (N7) which implies eN = o (N?) and because
|F — E||% = N7 by Condition 1(3). O

. .12
We show convergence of H Fr—2r ”2

Lemma 3. Under Conditions 1, 2, and 4,

~ A |12 ~ 12
)

Proof. By direct calculation,

N N 2
Er —ZTH
2

. N 2
=|(Fr=r)r -z (-5,
[adding and subtracting F and X]
. 2 ) . 2
= Z |:(FT,ij - Fi') + (Fij — Zij)" + (Zij - Zr,ij)
1<i,j<N

+2 (ﬁT,ij - Fi') (Fij — Zij) +2 (ﬁT,ij - Fi') (Zij - ﬁT,ij)

+2(Fij — %)) (z,, - im) }
[expanding the square]
= |F = 23+ 0, (N7).
using the following, which are easily derived using Condition 1,

> (Fra- Fi-)2 =0, (N'T7) = 0, (eN#) =0, (V). )

I<i,j<N
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because there are N nonzero elements in the sum and Fr ;j is root-n consistent:

Z (Zl’j — i]‘,,'j)z = 0p(eN) =0, (N/) ,

1<i,j<N
by Lemma 1,
S (Fras ) (F-3) = 0p (NPT-12) =0, (2NF1P) o, (7).
1<i,j<N
(10)
by similar reasoning as for (9),
2 (Pras= ) (25 - Ery) < |y - [ |2 -]
1<i,j <N
~ 2
=0y |81 -3[;) =on ),
by Lemma 1,
Z (Fij — Zij) (Zij - 2T,ij> <|NF-=Zl, Hir - ZHz
1<i,j<N
-0, (61/2N(1+v)/2> =0, (N7), (1)
by Lemma 1 and Condition 1(3). By Lemmata 2 and 1,
A 2
E|F- zTH2 = |F =23+ 0 (eN).
Hence,
a2 A2 .
Fr-%r| —€|F-%7| =o,(v). O
2 2
The following two lemmata will be used to show adaptiveness with respect to F.
Lemma 4. Under Conditions 1, 2, and 4,
A a2 .
E HF _ ZTH =< N7
2
and
A A 2 A 2 .
E|F-2r| —€[F -2 =0 (V).
2 2
Proof. We have the following chain of equalities
R A 2
E|fr 2|
2
A 2 ~ ~ ~ 2
= Z E |:(FT,ij - E) +2 (FT,ij - F,,) <F:, - ZT,ij) + (Fij - ET,ij) ]
1<i,j<N

[adding and subtracting F' and expanding the square]
. 2 A2 A N
e o el 2 (- n)(n -t o

SLj<
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A 2
By Lemma 2, E HF — 27 H2 =< N7, and mutatis mutandis from (9) using Condition 1(1),

. 2
E|Fr — FH2 = 0 (N?). By Holder inequality

3 [E(ﬁr,ij - Fij) (F,-j - iT,ij) < > [[E (ﬁr,ij—Fi.)z E(Fij—flT,ij)2]1/2

1<ij <N 1<ij <N
=0 (NﬁT_l/z)

~ 2 ~ 2
because by Condition 1(1), E (FT,ij — Fij) =0 (T_l), by Condition 4, [ (Fij — ZTJJ') =

O (1), and by Condition 1(2) there are at most O <N ﬁ) nonzero elements in the double sum.

~ |12
Asin (10), O (NﬁT_l/z) =0 (NV), implying that E H F—-Zr H2 = N7 is the dominating term.

Substituting these orders of magnitude in (12), we have the result. [
This is the final lemma before the proof of Theorem 1.
Lemma 5. Under Conditions 1, 2, and 4

Z COV(EA:TYI‘]‘,I:“,‘]):O(EN).

I<ij<N

Proof. By Holder inequality,

Z Cov (ﬁ:T,ijs I:}j)

1<ij<N

< 5 [y elm-n)] <o

1<i,j<N
because, by Condition 1(2), there are at most O (N ﬁ) nonzero elements in the double sum, by

~ 2 ~ 2
Condition 1(1) E (£ = F;;) = 0 (T~"), and by Condition 2, E ($7,5; = Zj) = 0 (1)
as shown in (7). Since f < 2, N¥/T =0 (eN). O

We can now prove Theorem 1.

Proof of Theorem 1(1). By the triangle inequality,

2
b 2
Ya<ijen /T B E ZT_ZHZ
. 12 - 2
N
2 2
b S —2”2 S —2”2 ElS —2”2
< Zlgi,jgNFT,ij/T r 2 4 2 r 2
= . e TR e . N . 2
ZT—FTH ZT—FT’ ET—FTH [E”ET—F”
2 2 2 2

=141
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Control over I: By Lemma 3, the Continuous Mapping Theorem and Lemma 2,

< ZT”z/ N>’>_l—”> <[EHF—2TH§/NV)_I “ NN =0(). (13)
By (13) and Lemma 1,
e | S fhreefsesf] [
2 ZTHZ/N‘/ 1<i j<N
—o,n| ¥ FT”/T—[E‘ZT—ZH ‘/N/

1<i,j<N

=0, (6N1_7> )

Control over 11: By direct calculation, Lemma 1 and (13),

. 2
E|er 2|
2

~ 2
>[5 -1, -

‘ 2

N ~ 12 »
[£r - 2]

g -2 /
Bl /v
_ 1-y
=0 (eN ’).

Hence, I+11 = o), (eN'~7), which gives [eNl’V]_1 (67 — a) = 0, (1). Tosee thatag < eN'77,
we just use Lemmata 1 and 2. Then, Condition 1(4) shows that eN'=7=0(). O

-7,

/\

.2 )
Bl /e
2

_F”/ ‘

Proof of Theorem 1(2). By the triangle inequality

N 2 A N N 2

[EHZT—2H2—Zlgi,jchov(zT,,-j,E,-) E|Er -2

A A 12 - A 2
[EHF—ZTH ElS, — F

2 2

2 2 A ~
ZHz : ZHz Yicij<n Cov <ZT‘ij’ Fij)

~ A~ 12 2 ~ . 2
[EHF—ZTH FH E|F -3,

2 2 2

=I4+1L
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Control over 1.
A 2 R
e A
<
I's ~ A |2 A 2
IR WS Rl Wa

=0 (6N1_7> ,

by Lemmata 1, 2 and 4.
Control over 11. By Lemmata 4 and 5,

Yi<ij<n Cov (iT,ij,Fij)/Ny .
II: 2 :0(€N1_’>. |:|
|7 5] / N7
Proof of Theorem 1(3). We have the following chain of inequalities,

H&TﬁT + (1 — &T) ﬁ:T —2”2

N N 2
‘[E F—ZTH _E
2

tr o[/

= |ar (Fr = F) +arF + (1= ar)Er - %[
[adding and subtracting a7 F]
4rF+ (1 —br) S —=| +ar | Fr—F|
[by Minkowski inequality]
= (&T - oco) <F - ﬁT> +oagF + (1 —op) 2y —ZHz + ar HﬁT - FH2

N

[adding and subtracting o (F — 27>]

N

wF + (1 — o) ﬁ:T — ZH2 + (&T — O(()) HF — ﬁ:THZ + ar Hﬁr — FHZ
[by Minkowski inequality]
=141+ 1L

We shall bound the three terms above. First, note that by Theorem 1(1),

(31 — %) = 0, (eNl—“/) , (14)
and

ar = 0, () < eN'"™7 =0 (1). (15)

Control over 1I: By Lemmata 3 and 2,
~ 2 .2 . .

HF - ZTH2 —F HF - ZTHZ +o, (N7) = 0, (N7).

hence using (14),

=0, (eN'=72).
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Control over 1II: Using (9) and (15)
I =0, (eN'=72).

Control over I: For the bound to be uniform, we only need to show that the following holds in
probability:

HO(QF + (1 — o) ﬁ:T — ZHZZGNI_WZ.

P
Using 2 to mean that = holds in probability and similarly for £

N 2
HocoF +(—o) Sy — 2”2

~ 2
= | F =2+ —a0) (3r - z)|
[adding and subtracting 0pX]
A 2 A
= oc(% |F — EH% + (- O£0)2 HZT — 2”2 + Z 200 (F,, — Z,’j) (ZT,,'./' - Z,’j)
1<i,j<N
[expanding the square]

ZeN. (16)
because
(1 — og)? HZT - 2”2 LN
[by (15) and Lem;al],
2IF-Z2=0 (621\72*7) = 0 (eN)
[by (15) and Condition 1(3)],

Y o (Fij— i) <2T,ij - Zij) =0, <e3/2N3/2—‘«’/2) =o0(eN),
1<i,j<N

by (15), (11) and Condition 1(4). By Condition 1(4), eN'=7/2 = o ([eN]'/?), so that
1% [eN]'/2 >eN'77/2,

To write ITand IIT in terms of I times an o (1) quantity we solve II+I1I= x [eN]'/2 = 0, (eN'77/2)
forxto find x = o, (el/zN(l_Wz), which implies the result. O
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