期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:173
Adaptive optimal kernel density estimation for directional data
Article
Thanh Mai Pham Ngoc1 
[1] Univ Paris Saclay, Univ Paris Sud, CNRS, Lab Math Orsay, F-91405 Orsay, France
关键词: Bandwidth selection;    Directional data;    Kernel density estimation;    Oracle inequality;    Penalization methods;   
DOI  :  10.1016/j.jmva.2019.02.009
来源: Elsevier
PDF
【 摘 要 】

This paper considers nonparametric density estimation with directional data. A new rule is proposed for bandwidth selection for kernel density estimation. The procedure is automatic, fully data-driven, and adaptive to the degree of smoothness of the density. An oracle inequality and optimal rates of convergence for the L-2 error are derived. These theoretical results are illustrated with simulations. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2019_02_009.pdf 683KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次