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1. Introduction

Directional data arise in many fields such as wind direction for the circular case, and astrophysics, paleomagnetism,
geology for the spherical case. Much effort has been made to devise statistical methods to tackle the density estimation
problem. We refer to [19] and more recently to [18] for a comprehensive review. Nonparametric procedures have been
well developed.

In this article we focus on kernel density estimation. Various works [3,11] have used projection methods on localized
bases adapted to the sphere. Classical references for kernel density estimation with directional data include the seminal
papers [2,9]. It is well known that the choice of the bandwidth is a key and intricate issue when using kernel methods.
In practice, various techniques for selecting the bandwidth have been suggested since the popular cross-validation rule
in [9]. Let us mention the plug-in and refined cross-validatory methods in [21,24] for the circular case, and [5] on the
torus.

Recently, García-Portugués [6] devised an equivalent of the rule-of-thumb of [23] for directional data, and Amiri et al.
[1] explored computational problems with recursive kernel estimators based on the cross-validation procedure of [9].
To the best of our knowledge, however, the various rules that have been proposed so far for selecting the bandwidth
in practice have not been assessed from a theoretical point of view. In particular, there are no results proving that
cross-validation is adaptively rate-optimal, even in the linear case. From a theoretical point of view, Klemelä [13] studied
convergence rates for L2 error over some regularity classes. Unfortunately, the asymptotically optimal bandwidth in [13]
depends on the density and its degree of smoothness, which is infeasible in practice.

In the linear case, kernel bandwidth selection rules have been proposed, leading to adaptive estimators which attain
optimal rates of convergence. By adaptive we mean that the estimator is adaptive to the degree of smoothness of the
underlying density: the method does not require the specification of the regularity of the density. In this regard, we may
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cite the remarkable series of papers [8,15,16] and the recent work of Lacour et al. [14]. The drawback of the methods
in [8,15,16] is that they involve tuning parameters. It is well known that in nonparametric statistics, minimax and oracle
theoretical results rarely give optimal choices for tuning parameters from a practical point of view with very conservative
choices. The major interest of the procedure in [14] is that it is free of tuning parameters, which constitutes a great
advantage in practice. The approach in [14] called PCO (Penalized Comparison of Overfitting) is based on concentration
inequalities for U-statistics.

In the present paper, we aim at filling the gap between theory and practice in the directional kernel density estimation
literature. Our goal is to construct a fully data-driven bandwidth selection rule providing an adaptive estimator which
reaches minimax rates of convergence for L2 risk over some regularity classes. This motivates our choice to adapt the
method of Lacour et al. [14] to the directional setting. Our procedure is simple to implement and in examples based on
simulations, it shows quite good performances in a reasonable computation time.

This paper is organized as follows. In Section 2, we present our estimation procedure. In Section 3 we provide an oracle
inequality and rates of convergences of our estimator for the MISE (Mean Integrated Squared Error). Section 4 gives some
numerical illustrations. Section 5 gives the proofs of theorems. Finally, the Appendix gathers technical propositions and
lemmas.

The following notation is used throughout. For two integers a, b, we denote a ∧ b = min(a, b) and a ∨ b = max(a, b).
For arbitrary y ∈ R, ⌊y⌋ denotes the integer part of y. Depending on the context, ∥ · ∥ denotes the classical L2 norm on R
or Sd−1. For any integer d ≥ 2, we denote the unit sphere of Rd by Sd−1

= {x ∈ Rd
: x21 + · · · + x2d = 1} and the associated

scalar product by ⟨·, ·⟩. For a vector x ∈ Rd, ∥x∥ stands for the Euclidean norm on Rd while ∥ · ∥∞ is the usual L∞-norm
on Sd−1. Finally, the scalar product of two vectors x and y, is denoted by x⊤y, where ⊤ is the transpose operator.

2. Estimation procedure

We are given n mutually independent and identically distributed observations X1, . . . , Xn on Sd−1 for some integer
d ≥ 2. The Xis are absolutely continuous with respect to the Lebesgue measure ωd on Sd−1 with common density f .
Therefore, a directional density f satisfies∫

Sd−1
f (x)ωd(dx) = 1.

We aim at constructing an adaptive kernel estimator of the density f with a fully data-driven choice of bandwidth.

2.1. Directional approximation kernel

We present some classical conditions that are required for the kernel.

Assumption 1. The kernel K : [0, ∞) → [0, ∞) is a bounded and Riemann integrable function such that

0 <

∫
∞

0
x(d−3)/2K (x)dx < ∞.

Assumption 1 is usual in kernel density estimation with directional data; see, e.g., Assumptions D1–D3 in [7] and
Assumption A1 in [1]. An example of kernel which satisfies Assumption 1 is the popular von Mises kernel K (x) = e−x.

2.2. Family of directional kernel estimators

We consider the following standard directional kernel density estimator
(
Kh(x, y) = K

{
(1 − x⊤y)/h

})
. For all x ∈ Sd−1,

f̂h(x) =
c0(h)
n

n∑
i=1

K
(
1 − x⊤Xi

h2

)
=

c0(h)
n

n∑
i=1

Kh2 (x, Xi) ,

where K is a kernel satisfying Assumption 1 and c0(h) a normalizing constant such that f̂h(x) integrates to unity:

c−1
0 (h) =

∫
Sd−1

Kh2 (x, y)ωd(dy).

It remains to select a convenient value for the bandwidth h.

Remark 1. Note that c0(h) does not depend on x. The ‘‘tangent-normal’’ decomposition (see [19]) says that if y is a vector
and x a fixed element of Sd−1, then denoting t = x⊤y their scalar product, we may always write y = tx + (1 − t2)1/2ξ ,
where ξ is a unit vector orthogonal to x. Further, the area element on Sd−1 can be written as

ωd(dx) = (1 − t2)(d−3)/2dt ωd−1(dξ ).
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Thus, using these conventions, one obtains

c−1
0 (h) =

∫
Sd−1

K
(
1 − x⊤y

h2

)
ωd(dy)

=

∫
Sd−2

∫ 1

−1
K

[
1 − x⊤

{tx + (1 − t2)1/2ξ}

h2

]
(1 − t2)(d−3)/2dt ωd−1(dξ )

=

∫
Sd−2

ωd−1(dξ )
∫ 1

−1
K

(
1 − tx⊤x

h2

)
(1 − t2)(d−3)/2dt

= σd−2

∫ 1

−1
K

(
1 − t
h2

)
(1 − t2)(d−3)/2dt,

where σd−1 = ωd(Sd−1) denotes the area of Sd−1. We recall that σd−1 = (2πd/2)/Γ (d/2) with Γ the Gamma function.

2.3. Bandwidth selection

In kernel density estimation, a delicate step consists in selecting the proper bandwidth h for f̂h. We present our
data-driven choice of bandwidth ĥ inspired from [14]. We name our procedure SPCO (Spherical Penalized Comparison
to Overfitting). Consider a set H of bandwidths defined by

H =

{
h :

{
∥K∥∞

n
1

R0(K )

}1/(d−1)

≤ h ≤ 1, and 1/h is an integer

}
, (1)

with R0(K ) = 2(d−3)/2σd−2
∫

∞

0 x(d−3)/2K (x)dx. We obtain the selected bandwidth by setting, for λ ∈ R,

ĥ = argmin
h∈H

{∥f̂h − f̂hmin∥
2
+ penλ(h)}, (2)

where hmin = minH and the penalty term penλ(h) is defined, for h ∈ H, as

penλ(h) =
λc20 (h)c2(h)

n
−

1
n

∫
Sd−1

{c0(hmin)Kh2min
(x, y) − c0(h)Kh2 (x, y)}

2ωd(dy), (3)

with c2(h) =
∫
Sd−1 K 2

h2
(x, y)ωd(dy).

Our SPCO estimator of f is f̂ĥ. The procedure SPCO involves a real parameter λ. In Section 3, we study how to choose
the optimal value of λ leading to a fully data-driven procedure.

Remark 2. Let us give some explanations about the terms involved in the expression of the selection rule (2). One can
decompose the risk E∥f − f̂h∥2 with the classical bias–variance decomposition. Hence, heuristically, the idea is to find the
best bandwidth h minimizing an estimate of the bias–variance decomposition of the risk. Developing the quantity

∥f̂h − f̂hmin∥
2
−

1
n

∫
Sd−1

{c0(hmin)Kh2min
(x, y) − c0(h)Kh2 (x, y)}

2ωd(dy),

one realizes that it is in fact an estimator of the bias. Since the variance is bounded by c20 (h)c2(h)/n, the term λc20 (h)c2(h)/n
acts as an estimator of the variance term. For more details, see Section 3.1 in [14].

Note that again c2(h) and penλ(h) do not depend on x using Remark 1. Indeed, similar computations lead to

c2(h) = σd−2

∫ 1

−1
K 2

(
1 − t
h2

)
(1 − t2)(d−3)/2dt,

and

penλ(h) =
λc20 (h)c2(h)

n
−

σd−2

n

∫ 1

−1

{
c0(hmin)K

(
1 − t
h2
min

)
− c0(h)K

(
1 − t
h2

)}2

(1 − t2)(d−3)/2dt.

3. Rates of convergence

3.1. Oracle inequality

First, we state an oracle-type inequality which highlights the bias–variance decomposition of the L2 risk when λ > 0.
In what follows, |H| denotes the cardinality of the set H. We denote fh = E(f̂h).
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Theorem 1. Assume that the kernel K satisfies Assumption 1 and ∥f ∥∞ < ∞. Let x ≥ 1 and ε ∈ (0, 1). Then there exists n0
independent of f such that, for n ≥ n0, with probability larger than 1 − C1|H|e−x,

∥f̂ĥ − f ∥2
≤ C0(ε, λ)min

h∈H
∥f̂h − f ∥2

+ C2(ε, λ)∥fhmin − f ∥2
+ C3(ε, K , λ){∥f ∥∞x2/n + c0(hmin)x3/n2

}, (4)

where C1 is an absolute constant and C0(ε, λ) = λ + ε if λ ≥ 1, C0(ε) = 1/λ + ε if 0 < λ < 1. The constant C2(ε, λ) only
depends on ε and λ and C3(ε, K , λ) only depends on ε, K and λ.

This oracle inequality bounds the quadratic risk of SPCO estimator by the infimum over H of the tradeoff between the
approximation term ∥fhmin − f ∥2 and the variance term ∥f̂h − f ∥2 provided that λ > 0. In fact, we need that λ > 0 to use
concentration inequalities to prove the oracle inequality. The terms C3(ε, K , λ){∥f ∥∞x2/n + c0(hmin)x3/n2

} are remainder
terms. Hence, this oracle inequality justifies our selection rule. For further details about oracle inequalities and model
selection see [20].

Nonetheless one could wonder what would happen if λ < 0. The next theorem shows that we cannot choose λ too
small (λ < 0) as it would lead to select a bandwidth close to hmin with high probability. One would obtain an overfitting
estimator. To this purpose, we suppose

∥f − fhmin∥
2 n
c20 (hmin)c2(hmin)

= o(1). (5)

Let us focus on Assumption (5). For h ∈ H, the bias of f̂h is equal to ∥f − fh∥2. As fhmin is the best approximation of f
among the gridH, the smallest bias for f̂h, h ∈ H is equal to ∥f −fhmin∥

2. Since the variance of f̂h is of order c20 (h)c2(h)/n, this
assumption means that the smallest bias ∥f − fhmin∥

2 is negligible with respect to the corresponding integrated variance.
Thus this assumption is mild.

Theorem 2. Assume that the kernel K satisfies Assumption 1 and ∥f ∥∞ < ∞. Assume also (5) and, for β > 0,

∥K∥∞/{nR0(K )} ≤ hd−1
min ≤ (ln n)β/n.

Then if we consider penλ(h) defined in (3) with λ < 0, we have for n large enough, with probability larger than 1 −

C1|H|e−(n/ln n)1/3 ,

ĥ ≤ C(λ)hmin ≤ C(λ){(ln n)β/n}1/(d−1),

where C1 is an absolute constant and C(λ) = {1.23 (2.1 − 1/λ)}1/(d−1).

Remark 3. Theorem 2 invites us to discard λ < 0. Indeed, setting λ to negative values leads the procedure to select with
large probability a bandwidth ĥ close to hmin. As a result, we would obtain an overfitting estimator which behaves very
poorly. Now considering oracle inequality (4), λ = 1 yields the minimal value of the leading constant C0(ε, λ) = λ + ε.
Thus, the theory urges us to take the optimal value λ = 1 in the SPCO procedure. Actually, we will see in the numerical
section that the choice λ = 1 is quite efficient.

3.2. Free of tuning parameters estimator and rates of convergence

Results of Section 3.1 about the optimality of λ = 1 enable us to devise our estimator free of tuning parameters. We
call it f̂ȟ with bandwidth ȟ defined as in (2) with λ = 1.

We now compute rates of convergence for the MISE of our estimator f̂ȟ over some smoothness classes. In [13], suitable
smoothness classes are defined for the study of the MISE. In particular, these regularity classes involve a concept of an
‘‘average’’ of directional derivatives which was first defined in [9]. Let us recall the definition of these smoothness classes
in [13].

Let η ∈ Sd−1 and Tη = {ξ ∈ Sd−1
: ξ ⊥ η}. Let φη : Sd−1

\ {η, −η} → Tη × (0, π ) be a parameterization of Sd−1 defined
by

φ−1
η (ξ, θ ) = η cos(θ ) + ξ sin(θ ).

When g : Rd
→ R and x, ξ ∈ Rd, define the derivative of g at x in the direction of ξ to be Dξg(x) = limh→0 h−1

{g(x +

hξ ) − g(x)} and Ds
ξg = DξDs−1

ξ g , for some integer s ≥ 2.
We will now define the derivative of order s.

Definition 1. Let f : Sd−1
→ R and define f̄ : Rd

→ R by f̄ (x) = f (x/∥x∥). The derivative of order s is Dsf : Sd−1
→ R

defined by

Dsf (x) =
1

σd−1

∫
Tx
Ds

ξ f̄ (x)ωd(dξ ),

where Tx = {ξ ∈ Sd−1
: ξ ⊥ x}.
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Definition 2. When f : Sd−1
→ R, define D̃sf : Sd−1

× R → R by

D̃sf (x, θ ) =
1

σd−1

∫
Tx
Ds

φ−1
x (ξ,θ+

π
2 )
f̄ {φ−1

x (ξ, θ )}ωd(dξ ).

We are now able to define the smoothness class F2(s); see [13].

Definition 3. Let s ≥ 2 be even and p ∈ [1, ∞]. Let F2(s) be the set of functions f : Sd−1
→ R such that (i) ∥Dif ∥ < ∞

for all i ∈ {0, . . . , s}; (ii) for all x ∈ Sd−1 and all ξ ∈ Tx, ∂ sf {φ−1
x (ξ, θ )}/∂θ s is continuous as a function of θ ∈ R;

(iii) ∥D̃sf (·, θ )∥ is bounded for θ ∈ [0, π] and (iv) limθ→0 ∥D̃sf (·, θ ) − Dsf ∥ = 0.

To achieve optimal rates of convergence over the class F2(s), we need supplementary conditions on the kernel to deal
with the bias term. The idea of reducing the bias in the Euclidean case using a class s kernel dates back to [4,22]. In the
directional case, this has been early pointed out in [9]. Following [13], we will define what is called a kernel of class s.
For all i ∈ N, let

αi(K ) =

∫
∞

0
x(i+d−3)/2K (x)dx.

Assumption 2. Let s ≥ 0 be even. The kernel K is of class s, i.e., it is a measurable function K : [0, ∞) → R which
satisfies:

(i) αi(K ) < ∞ for i ∈ {0, s};
(ii) α0(K ) ̸= 0;
(iii)

∫ h−2

0 x(2i+d−3)/2K (x)dx = o(hs−2i) for i ∈ {1, . . . , s/2 − 1}, when h → 0.

In Assumption 2, s must be even because Dsf (x) = 0 for all x ∈ Sd−1 when s ≥ 1 is odd; see Chapter 2 in [12].
Furthermore, note that von Mises kernel is of order 2.

Now, a direct application of the oracle inequality in Theorem 1 allows us to derive rates of convergence for the MISE
of f̂ȟ.

Theorem 3. Consider a kernel K satisfying Assumptions 1 and 2. For B > 0, denote by F̃2(s, B) the set of densities bounded
by B and belonging to F2(s). Then we have

sup
f∈F̃(s,B)

E(∥f̂ȟ − f ∥2) ≤ C(s, K , d, B)n−2s/(2s+d−1),

with C(s, K , d, B) a constant depending on s, K , d and B.

Theorem 3 shows that the estimator f̂ȟ achieves the optimal rate of convergence for estimating a density on Sd−1

with an s order smoothness; matching lower bounds are proved in Chapter 6 of [12] and in [3]. Hence estimating on
the d-dimensional sphere appears to be analogous to inference in (d− 1)-dimensional space. Furthermore, our statistical
procedure is adaptive to the smoothness s. It means that it does not require the specification of s.

4. Numerical results

We investigate the numerical performances of our fully data-driven estimator f̂ȟ defined in Section 3.2. We compare f̂ȟ
with the widely used cross-validation estimator and with an ‘‘oracle’’ to be defined later on. We focus on the unit sphere
S2, i.e., the case d = 3.

We consider various densities. The first one is the von Mises–Fisher density

f1,vM =
κ

2π (eκ − e−κ )
eκx⊤µ,

with κ = 2 and µ = (1, 0, 0)⊤; see Fig. 1. We recall that κ is the concentration parameter and µ the directional mean.
Note that the smaller the concentration parameter is, the closer to the uniform density the von Mises–Fisher density is.
We also estimate the mixture of two von Mises–Fisher densities, viz.

f2,vM =
4
5

×
κ

2π (eκ − e−κ )
eκx⊤µ

+
1
5

×
κ ′

2π (eκ ′
− e−κ ′ )

eκ ′x⊤µ′

,

with κ ′
= 0.7 and µ′

= (−1, 0, 0)⊤. Note that f1,vM is rotationally symmetric and f2,vM also since µ and µ′ are antipodal.
Finally, let us consider a non rotationally symmetric density

f3,vM =
4
5

×
κ

2π (eκ − e−κ )
eκx⊤µ

+
1
5

×
κ ′

2π (eκ ′
− e−κ ′ )

eκ ′x⊤µ′′

,

with µ′′
= (0, 1/

√
2, 1/

√
2)⊤.
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Fig. 1. The density f1,vM in spherical coordinates.

Fig. 2. (a) Empirical L2-risk of f̂ȟ to estimate f1,vM in function of λ; (b) A zoom.

Now let us define what the ‘‘oracle’’ f̂horacle is. The bandwidth horacle is defined as

horacle = argmin
h∈H

∥f̂h − f ∥2.

This bandwidth can be viewed as the ‘‘ideal’’ one since it uses the specification of the density of interest f which is here
f1,vM , f2,vM or f3,vM . Hence, the performances of f̂horacle are used as a benchmark.

In the sequel we present detailed results for f1,vM , namely risk curves and graphic reconstructions and we compute
MISE for f1,vM , f2,vM or f3,vM . We use the von Mises kernel K (x) = e−x.

Before presenting the performances of the various procedures, we shall remind that theoretical results of Section 3.1
have shown that setting λ = 1 in the SPCO algorithm is optimal. We would like to show how simulations actually support
this conclusion. Indeed, Fig. 2 displays the empirical L2 risk of f̂ĥ to estimate f1,vM in function of parameter λ for n = 100
and 100 Monte Carlo replications. Fig. 2(a) shows a ‘‘dimension jump’’ and that the minimal risk is reached in a stable
zone around λ = 1: negative values of λ lead to an overfitting estimator (ĥ is chosen close to hmin as shown in Theorem 2)
with poor performances whereas large values of λ make the risk increase again; see a zoom on Fig. 2(b). Next, considering
the MISE computations, we will see that λ = 1 yields quite good results.

In Lemma D of the Appendix, we develop the expression (2) to be minimized to implement our estimator f̂ȟ. We now
recall the cross-validation criterion of [9]. Let

f̂h,i(x) =
c0(h)
n − 1

n∑
j̸=i

e−(1−x⊤Xj)/h2 .

Then

CV2(h) = ∥f̂h∥2
−

2
n

n∑
i=1

f̂h,i(x).
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Fig. 3. Risks curves in function of h for f1,vM , n = 500: (a) Roracle; (b) RSPCO; (c) CV2 . Vertical red lines represent the bandwidth value h minimizing
each curve . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Reconstruction of f1,vM , n = 500: (a) f̂horacle , horacle = 0.33; (b)/SPCO f̂ĥ , ĥ = 0.25; (c) cross-validation f̂hCV2 , hCV2 = 0.25.

Table 1
MISE over 100 Monte Carlo repetitions to estimate f1,vM .

n = 50 n = 100 n = 500

Oracle 0.0088 0.0064 0.0027
SPCO 0.0160 0.0091 0.0048
Cross-validation 0.0191 0.0099 0.0053

Table 2
MISE over 100 Monte Carlo repetitions to estimate f2,vM .

n = 50 n = 100 n = 500

Oracle 0.0086 0.0051 0.0027
SPCO 0.0122 0.0083 0.0043
Cross-validation 0.0139 0.0096 0.0047

Table 3
MISE over 100 Monte Carlo repetitions to estimate f3,vM .

n = 50 n = 100 n = 500

Oracle 0.0099 0.0075 0.0043
SPCO 0.0153 0.0107 0.0063
Cross-validation 0.0185 0.0122 0.0066

Note that CV2(h)+∥f ∥2 is an unbiased estimate of the MISE of f̂h. The cross-validation procedure to select the bandwidth
h consists in minimizing CV2 with respect to h. We call this selected value hCV2 .

In the rest of this section, SPCO will denote the estimation procedure related to f̂ȟ. In Fig. 3, for n = 500 we plot as a
function of h: Roracle = ∥f̂h − f1,vM∥

2
− ∥f1,vM∥

2 for the oracle, RSPCO = ∥f̂h − f̂hmin∥
2
+ penλ=1(h) for SPCO and CV2(h) for

cross-validation. We point out on each plot the value of h that minimizes each quantity. In Fig. 4, we plot in spherical
coordinates, for n = 500, density reconstructions of f1,vM for the oracle, SPCO and cross-validation. Eventually, in Tables 1–
3, we compute MISE of the oracle, SPCO and cross-validation to estimate f1,vM , f2,vM and f3,vM for n ∈ {50, 100, 500} over
100 Monte Carlo runs.

When analyzing the results, SPCO performs nicely. In particular, inspection of Tables 1–3 shows that SPCO is close to
the oracle and is always slightly better than cross-validation for all densities.
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5. Proofs of theorems

In the sequel, Ξ denotes an absolute constant which may change from line to line. The following proofs of theorems
rely on technical propositions and lemmas which are gathered for sake of clarity in the Appendix. More specifically,
proofs of Theorems 1 and 2 use Lemma A, Propositions A and B, and proof of Theorem 3 uses Proposition C.

Proof of Theorem 1. We set τ = λ− 1. Let ε ∈ (0, 1) and θ ∈ (0, 1) depending on ε to be specified later. Developing the
expression of penλ(h) given in (3), we have

penλ(h) = λc20 (h)c2(h)/n − c20 (hmin)c2(hmin)/n − c20 (h)c2(h)/n + 2⟨c0(h)Kh2 , c0(hmin)Kh2min
⟩/n

= τ c20 (h)c2(h)/n − c20 (hmin)c2(hmin)/n + 2⟨c0(h)Kh2 , c0(hmin)Kh2min
⟩/n.

Using Proposition B and the expression of penλ(h) given above, we obtain with probability greater than 1 −

Ξ |H| exp(−x), for any h ∈ H,

(1 − θ )∥f̂ĥ − f ∥2
+ τ c20 (ĥ)c2(ĥ)/n ≤ (1 + θ )∥f̂h − f ∥2

+ τ c20 (h)c2(h)/n + C2/θ∥fhmin − f ∥2

+C(K ){∥f ∥∞x2/n + c0(hmin)x3/n2
}/θ, (6)

with C2 an absolute constant and C(K ) a constant only depending on K . We first consider the case τ ≥ 0. Using (A.5) of
Proposition A, with probability 1 − Ξ |H|e−x one has

τ c20 (h)c2(h)/n ≤ τ (1 + θ )∥f − f̂h∥2
+ τC ′(K )∥f ∥∞x2/(θ3n),

where C ′(K ) is a constant only depending on the kernel K . As τ c20 (ĥ)c2(ĥ)/n ≥ 0, thus (6) becomes

(1 − θ )∥f̂ĥ − f ∥2
≤ {1 + θ + τ (1 + θ )}∥f̂h − f ∥2

+ C2∥fhmin − f ∥2/θ

+C(K ){∥f ∥∞x2/n + c0(hmin)x3/n2
}/θ + τC ′(K )∥f ∥∞x2/(θ3n).

With θ = ε/(ε + 2 + 2τ ), we obtain

∥f̂ĥ − f ∥2
≤ (1 + τ + ε)∥f̂h − f ∥2

+
C2(ε + 2 + 2τ )2

(2 + 2τ )ε
∥fhmin − f ∥2

+ C ′′(K , ε, τ ){∥f ∥∞x2/n + c0(hmin)x3/n2
},

with C ′′(K , ε, τ ) a constant depending only on K , ε, τ .
Let us now study the case τ ∈ (−1, 0]. Using (A.5) of Proposition A with h = ĥ, we have with probability 1−Ξ |H|e−x,

τ c20 (ĥ)c2(ĥ)/n ≥ τ (1 + θ )∥f − f̂ĥ∥
2
+ τC ′(K )∥f ∥∞x2/(θ3n).

Consequently, as τ c20 (h)c2(h)/n ≤ 0, (6) becomes

{1 − θ + τ (1 + θ )}∥f̂ĥ − f ∥2
≤ (1 + θ )∥f̂h − f ∥2

+ C2∥fhmin − f ∥2/θ

+C(K ){∥f ∥∞x2/n + c0(hmin)x3/n2
}/θ − τC ′(K )∥f ∥∞x2/(θ3n).

With θ = ε(τ + 1)2/{2 + ε(1 − τ 2)} < 1, we obtain with probability 1 − Ξ |H|e−x,

∥f̂ĥ − f ∥2
≤

(
1

1 + τ
+ ε

)
∥f̂h − f ∥2

+ C ′′(ε, τ )∥fhmin − f ∥2
+ C ′′′(K , ε, τ ){∥f ∥∞x2/n + c0(hmin)x3/n2

},

with C ′′(ε, τ ) a constant depending on ε and τ and C ′′′(K , ε, τ ) a constant depending on K , ε and τ . This completes the
proof of Theorem 1. □

Proof of Theorem 2. We still set τ = λ − 1. We set θ ∈ (0, 1) such that θ < −(1 + τ )/5. We consider inequality (6)
written with h = hmin. One obtains

(1 − θ )∥f̂ĥ − f ∥2
+ τ c20 (ĥ)c2(ĥ)/n ≤ (1 + θ )∥f̂hmin − f ∥2

+ τ c20 (hmin)c2(hmin)/n

+C2∥fhmin − f ∥2/θ + C(K ){∥f ∥∞x2/n + c0(hmin)x3/n2
}/θ.

Now consider Eq. (A.4) with h = hmin, one gets

∥f − f̂hmin∥ ≤ (1 + θ ){∥f − fhmin∥
2
+ c20 (hmin)c2(hmin)/n} + C ′(K )∥f ∥∞x2/(θ3n).

Combining the two inequalities above, we have

(1 − θ )∥f̂ĥ − f ∥2
+ τ c20 (ĥ)c2(ĥ)/n ≤ {(1 + θ )2 + C2/θ}∥f − fhmin∥

2
+ {τ + (1 + θ )2}c20 (hmin)c2(hmin)/n

+C(K ){∥f ∥∞x2/n + c0(hmin)x3/n2
}/θ + (1 + θ )C ′(K )∥f ∥∞x2/(θ3n).
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Now let us define un = ∥fhmin − f ∥2/{c20 (hmin)c2(hmin)/n}. We have by Assumption (5) that un → 0 when n → ∞. Then
we get

(1 − θ )∥f̂ĥ − f ∥2
+ τ c20 (ĥ)c2(ĥ)/n ≤ [{(1 + θ )2 + C2/θ}un + τ + (1 + θ )2]c20 (hmin)c2(hmin)/n

+C(K , θ ){∥f ∥∞x2/n + x3c0(hmin)/n2
}. (7)

Now we consider using Eq. (A.5) from Proposition A with h = ĥ and η = 1, we get

c0(ĥ)c2(ĥ)/n ≤ 2∥f − f̂ĥ∥ + C ′(K )∥f ∥∞x2/n.

Then

∥f − f̂ĥ∥ ≥ c0(ĥ)c2(ĥ)/(2n) − C ′(K )∥f ∥∞x2/n

and hence (7) becomes

{(1 − θ )/2 + τ }c20 (ĥ)c2(ĥ)/n ≤ [{(1 + θ )2 + C2/θ}un + τ + (1 + θ )2]c20 (hmin)c2(hmin)/n
+C ′(K , θ ){∥f ∥∞x2/n + x3c0(hmin)/n2

}.

However, we assumed that un = o(1). Thus for n large enough, {(1 + θ )2 + C2/θ}un ≤ θ . We are now going to bound
the remainder terms C ′(K , θ ){∥f ∥∞x2/n + c0(hmin)x3/n2

}. We have

C ′(K , θ ){∥f ∥∞x2/n + c0(hmin)x3/n2
}

n
c20 (hmin)c2(hmin)

= C ′′(K , θ, ∥f ∥∞)
{

x2

c20 (hmin)c2(hmin)
+

x3

nc0(hmin)c2(hmin)

}
≤ C ′′(K , θ, ∥f ∥∞)(x2hd−1

min + x3/n),

for n large enough using (A.1) and (A.2) from Lemma A. But hd−1
min ≤ (ln n)β/n and setting x = (n/ln n)1/3, we get

C ′′(K , θ, ∥f ∥∞)(x2hd−1
min + x3/n) ≤ C ′′(K , θ, ∥f ∥∞){(ln n)β−2/3/n1/3

+ 1/ln n} = o(1) ≤ θ,

for n large enough. Consequently there exists N such that for n ≥ N , with probability larger than 1 − Ξ |H|e−(n/ln n)1/3 ,

{(1 − θ )/2 + τ }c20 (ĥ)c2(ĥ)/n ≤ {θ + τ + (1 + θ )2 + θ}c20 (hmin)c2(hmin)/n ≤ (1 + τ + 5θ )c20 (hmin)c2(hmin)/n.

Using (A.3) of Lemma A, we have, for n large enough,

0.9 h1−dR(K ) ≤ c20 (h)c2(h) ≤ 1.1 h1−dR(K ).

Thus we finally get, for n large enough,

0.9{(1 − θ )/2 + τ }ĥ1−d
≤ 1.1(1 + τ + 5θ )h1−d

min ⇔ {(1 − θ )/2 + τ }ĥ1−d
≤ 1.23(1 + τ + 5θ )h1−d

min .

But (1 − θ )/2+ τ < 1+ τ < 0, and because we have chosen θ such that 1+ τ + 5θ < 0 (for instance θ = −(τ + 1)/10)),
one gets

ĥ ≤

{
1.23(1 + τ + 5θ )
(1 − θ )/2 + τ

}1/(d−1)

hmin.

With θ = −(τ + 1)/10, the inequality above becomes for n large enough

ĥ ≤ {1.23 (2.1 − 1/λ)}1/(d−1) hmin,

which completes the proof of Theorem 2. □

Proof of Theorem 3. Let f ∈ F̃2(s, B) and E be the event corresponding to the intersection of events in Theorem 1 and
Proposition A. Let E∁ denote the complementary of E . For any A > 0, by taking x proportional to ln n, Pr(E) ≥ 1 − n−A.
We have

E(∥f̂ȟ − f ∥2) ≤ E(∥f̂ȟ − f ∥21E ) + E(∥f̂ȟ − f ∥21E∁ ).

Let us deal with the second term of the right-hand side. We have ∥f̂h − f ∥2
≤ 2(∥f̂h∥2

+ ∥f ∥2). However,

∥f̂h∥2
=

c20 (h)
n2

∑
i,j

∫
Sd−1

Kh2 (x, Xi)Kh2 (x, Xj)ωd(dx)

≤
c0(h)
n2 ∥K∥∞

∑
i,j

c0(h)
∫
Sd−1

Kh2 (x, Xj)ωd(dx) ≤ c0(h)∥K∥∞ ≤ 2n,
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since c0(h) ≤ 2n/∥K∥∞, using (A.1) and (1) for n large enough. Thus ∥f̂h − f ∥2
≤ 2n + 2∥f ∥2, which gives the result on

E∁. Now on E , for n ≥ n0 (n0 not depending on f ) Propositions A and C yield that

min
h∈H

∥f̂h − f ∥2
≤ (1 + η)min

h∈H
{∥f − fh∥2

+ c20 (h)c2(h)/n} + Ξ Υ (ln n)2/(η3n)

≤ C min
h∈H

(h2s
+ h1−d/n) + Ξ Υ (ln n)2/(η3n).

Minimizing in h the right-hand side of the last inequality gives the result on E . □
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Appendix

This Appendix gathers technical results needed to prove the theorems. We shall start with a lemma that collects some
standard properties about constants c0 and c2.

Lemma A. We have, as h → 0,

c−1
0 (h) = R0(K )hd−1

+ o(1), (A.1)

where R0(K ) = 2(d−3)/2σd−2α0(K ). We also have, as h → 0,

c2(h) = R1(K )hd−1
+ o(1), (A.2)

with R1(K ) = 2(d−3)/2σd−2
∫

∞

0 x(d−3)/2K 2(x)dx. Eventually we have, when h → 0,

c20 (h)c2(h) = h1−dR(K ) + o(1), (A.3)

with R(K ) = R1(K )/R2
0(K ).

The proof of Lemma A can be found in the proof of Proposition 4.1 of [1].
Propositions A and B are essential to prove Theorems 1 and 2. Let us start with Proposition A, which is a counterpart

of Proposition 4.1 of [17] for Sd−1.

Proposition A. Assume that the kernel K satisfies Assumption 1. Let Υ ≥ (1 + 2∥f ∥∞) ∨ 8π∥K∥∞R0(K )/R1(K ). There exists
n0 such that, for n ≥ n0 (n0 not depending on f ), all x ≥ 1 and for all η ∈ (0, 1) with probability larger than 1 − Ξ |H|e−x,
for all h ∈ H each of the following inequalities holds:

∥f − f̂h∥ ≤ (1 + η){∥f − fh∥2
+ c20 (h)c2(h)/n} + Ξ Υ x2/(η3n) (A.4)

∥f − fh∥2
+ c20 (h)c2(h)/n ≤ (1 + η)∥f − f̂h∥2

+ Ξ Υ x2/(η3n). (A.5)

Proof of Proposition A. To prove Proposition A, we need to verify Assumptions (11)–(16) of [17]. We recall that

fh = E(f̂h) = c0(h)
∫
y∈Sd−1

f (y)Kh2 (x, y)ωd(dy).

Let us check Assumption (11) of [17]. This one amounts to prove that, for some Γ and Υ ,

Γ (1 + ∥f ∥∞) ∨ sup
h∈H

∥fh∥2
≤ Υ .

We have

∥fh∥2
≤ ∥f ∥∞

∫
x

{∫
y
c0(h)Kh2 (x, y)ωd(dy)

}
  

=1

{∫
y
f (y)c0(h)Kh2 (x, y)ωd(dy)

}
ωd(dx)

≤ ∥f ∥∞

∫
y
f (y)

∫
x
c0(h)Kh2 (x, y)ωd(dx)ωd(dy) ≤ ∥f ∥∞.

Therefore, Assumption (11) in [17] holds with Γ = 1 and Υ ≥ 1 + ∥f ∥∞.
Let us check Assumption (12) of [17]. We have to prove that∫

c20 (h)K
2
h2 (x, x)ωd(dx) ≤ Υ n

∫∫
c20 (h)K

2
h2 (x, y)ωd(dx)f (y)ωd(dy).
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Given that∫∫
c20 (h)K

2
h2 (x, y)ωd(dx)f (y)ωd(dy) = c20 (h)c2(h)

∫
f (y)ωd(dy) = c20 (h)c2(h),

and ∫
c20 (h)K

2
h2 (x, x)ωd(dx) = 4πc20 (h)K

2(0),

Assumption (12) amounts to check that

4πc20 (h)K
2(0) ≤ Υ nc20 (h)c2(h) ⇔ Υ ≥ 4πK 2(0)/{nc2(h)}.

But using (A.2), we have

c2(h) = R1(K )hd−1
+ o(1),

when h → 0 uniformly in h. Thus there exist n1, n1 independent of f such that, for n ≥ n1, c2(h) ≥ R1(K )hd−1/2. Now using
that hd−1

≥ ∥K∥∞/{R0(K )n} and K (0) ≤ ∥K∥∞, it is sufficient to have Υ ≥ 8π∥K∥∞R0(K )/R1(K ) to ensure Assumption
(12) in [17].

Assumption (13) in [17] consists to prove that

∥fh − fh′∥∞ ≤ Υ ∨
√

Υ n∥fh − fh′∥2.

For any h ∈ H and any x ∈ Sd−1, we have ∥fh∥∞ ≤ ∥f ∥∞. Therefore, Assumption (13) in [17] holds for Υ ≥ 2∥f ∥∞.
Assumptions (14) and (15) of [17] consist in proving respectively that

E
{
c20 (h)

∫
Kh2 (X, z)Kh2 (z, Y )ωd(dz)

}2

≤ Υ c20 (h)c2(h)

and

sup
x∈Sd−1

E
{
c20 (h)

∫
Kh2 (X, z)Kh2 (z, x)ωd(dz)

}2

≤ Υ n.

We have

c20 (h)
∫

Kh2 (x, z)Kh2 (z, y)ωd(dz) ≤ c20 (h)c2(h) ∧ c0(h)∥K∥∞.

Indeed if y = z, then
∫
Kh2 (x, z)Kh2 (z, y)ωd(dz) =

∫
K 2
h2
(x, z)ωd(dz) = c2(h). Otherwise,

c20 (h)
∫

Kh2 (x, z)Kh2 (z, y)ωd(dz) ≤ c0(h)∥K∥∞ c0(h)
∫

Kh2 (x, z)ωd(dz)  
=1

= c0(h)∥K∥∞.

Furthermore, (A.1) entails that there exists n2 independent of f such that, for n ≥ n2, c−1
0 (h) ≥ R0(K )hd−1/2 and

consequently c0(h) ≤ 2n/∥K∥∞, using (1). Thus, for n ≥ n2,

c20 (h)
∫

Kh2 (x, z)Kh2 (z, y)ωd(dz) ≤ c20 (h)c2(h) ∧ 2n. (A.6)

We have

E
{
c20 (h)

∫
z
Kh2 (X, z)Kh2 (z, x)ωd(dz)

}
= c20 (h)

∫
z

{∫
y
Kh2 (y, z)f (y)ωd(dy)

}
Kh2 (z, x)ωd(dz)

≤ ∥f ∥∞c0(h)
∫
z
c0(h)

∫
y
Kh2 (y, z)ωd(dy)Kh2 (z, x)ωd(dz)

≤ ∥f ∥∞. (A.7)

Therefore, for n ≥ n2,

sup
x∈Sd−1

E
[
c20 (h)

∫
Kh2 (X, z)Kh2 (z, x)ωd(dz)

]2

≤ sup
(x,y)

{
c20 (h)

∫
Kh2 (x, z)Kh2 (z, y)ωd(dz)

}
× sup

x
E
{
c20 (h)

∫
Kh2 (X, z)Kh2 (z, x)ωd(dz)

}
≤ {c20 (h)c2(h) ∧ 2n}∥f ∥∞,
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using (A.6) and (A.7). Moreover, we have

E
{
c20 (h)

∫
Kh2 (X, z)Kh2 (z, Y )ωd(dz)

}2

≤ sup
x

E
{
c20 (h)

∫
Kh2 (X, z)Kh2 (z, x)ωd(dz)

}2

≤ {c20 (h)c2(h) ∧ 2n}∥f ∥∞

using (A.6) and (A.7). Hence Assumptions (14) and (15) in [17] hold for Υ ≥ 2∥f ∥∞.
Let t ∈ Bc0(h)Kh2

be the set of functions t such that t(x) =
∫
a(z)c0(h)Kh2 (z, x)ωd(dz) for some a ∈ L2(Sd−1) with ∥a∥ ≤ 1.

Now let a ∈ L2(Sd−1) be such that ∥a∥ = 1 and t(y) =
∫
a(x)c0(h)Kh2 (x, y)ωd(dx) for all y ∈ Sd−1. To verify Assumption

(16) in [17] we have to prove that

sup
t∈Bc0(h)Kh2

∫
t(x)f (x)ωd(dx) ≤ Υ ∨

√
Υ c20 (h)c2(h).

Using the Cauchy–Schwarz inequality, one gets

t(y) ≤

√∫
Sd−1

a2(x)ωd(dx)

√
c20 (h)

∫
Sd−1

K 2
h2
(x, y)ωd(dx) ≤

√
c20 (h)c2(h).

Thus for any t ∈ Bc0(h)Kh2∫
t2(x)f (x)ωd(dx) ≤ ∥t∥∞⟨|t|, f ⟩ ≤

√
c20 (h)c2(h) ∥f ∥ × ∥t∥,

but using the Cauchy–Schwarz inequality and Fubini, one gets

∥t∥ =

∫
x

{∫
y
a(y)c0(h)Kh2 (x, y)ωd(dy)

}2

ωd(dx)

≤

∫
x

{∫
y
a2(y)c0(h)Kh2 (x, y)ωd(dy)

}{∫
y
c0(h)Kh2 (x, y)ωd(dy)

}
ωd(dx)

=

∫
x

∫
y
a2(y)c0(h)Kh2 (x, y)ωd(dy)ωd(dx)

=

∫
y
a2(y)

{∫
x
c0(h)Kh2 (x, y)ωd(dx)

}
ωd(dy) = 1.

Furthermore,∫
t2(x)f (x)ωd(dx) ≤ ∥f ∥

√
c20 (h)c2(h) ≤

√
∥f ∥∞

√
c20 (h)c2(h) ≤

√
Υ c20 (h)c2(h),

and hence Assumption (16) in [17] is verified.
Finally, Assumptions (11)–(16) from [17] hold in the spherical setting, for n ≥ n0 = max(n1, n2) and if Γ = 1 and

Υ ≥ (1 + 2∥f ∥∞) ∨ 8π∥K∥∞R0(K )/R1(K ).

This enables us to use Proposition 4.1 of [17] which gives Proposition A. □

The next proposition gives a general result on the estimator f̂ĥ.

Proposition B. Assume that the kernel K satisfies Assumption 1 and ∥f ∥∞ < ∞. Let x ≥ 1 and θ ∈ (0, 1). With probability
larger than 1 − C1|H|e−x, with C1 an absolute constant, for any h ∈ H,

(1 − θ )∥f̂ĥ − f ∥2
≤ (1 + θ )∥f̂h − f ∥2

+ {penλ(h) − 2⟨c0(h)Kh2 , c0(hmin)Kh2min
⟩/n}

− {penλ(ĥ) − 2⟨c0(ĥ)Kĥ2 , c0(hmin)Kh2min
⟩/n}

+ C2∥fhmin − f ∥2/θ + C(K ){∥f ∥∞x2/n + x3c0(hmin)/n2
}/θ,

where C1 and C2 are absolute constants and C(K ) only depends on K .

In order to avoid any confusion, we recall that Kh2 = Kh2 (·, ·) and

⟨c0(h)Kh2 , c0(hmin)Kh2min
⟩ =

∫
Sd−1

c0(h)Kh2 (x, y)c0(hmin)Kh2min
(x, y)ωd(dy).
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Once again, we would like to draw the attention to the fact that the quantity∫
Sd−1

c0(h)Kh2 (x, y)c0(hmin)Kh2min
(x, y)ωd(dy)

does not depend on x. Indeed, we have, using Remark 1∫
Sd−1

Kh2 (x, y)Kh2min
(x, y)ωd(dy) =

∫
Sd−1

K
(
1 − x⊤y

h2

)
K

(
1 − x⊤y
h2
min

)
ωd(dy)

= σd−2

∫ 1

−1
K

(
1 − t
h2

)
K

(
1 − t
h2
min

)
(1 − t2)(d−3)/2dt.

Proof of Proposition B. The proof follows the proof of Theorem 9 in [14] adapted to Sd−1. Let θ ′
∈ (0, 1) be fixed and

chosen later. Using the definition of ĥ, we can write, for any h ∈ H

∥f̂ĥ − f ∥2
+ penλ(ĥ) = ∥f̂ĥ − f̂hmin∥

2
+ penλ(ĥ) + ∥f̂hmin − f ∥2

+ 2⟨f̂ĥ − f̂hmin , f̂hmin − f ⟩

≤ ∥f̂h − f̂hmin∥
2
+ penλ(h) + ∥f̂hmin − f ∥2

+ 2⟨f̂ĥ − f̂hmin , f̂hmin − f ⟩

≤ ∥f̂h − f ∥2
+ 2∥f − f̂hmin∥

2
+ 2⟨f̂h − f , f − f̂hmin⟩

+ penλ(h) + 2⟨f̂ĥ − f̂hmin , f̂hmin − f ⟩.

Consequently,

∥f̂ĥ − f ∥2
≤ ∥f̂h − f ∥2

+ {penλ(h) − 2⟨f̂h − f , f̂hmin − f ⟩} − {penλ(ĥ) − 2⟨f̂ĥ − f , f̂hmin − f ⟩}. (A.8)

Then for a given h, we study the term 2⟨f̂h − f , f̂hmin − f ⟩. Let us introduce the degenerate U-statistic

U(h, hmin) =

∑
i̸=j

⟨
c0(h)Kh2 (., Xi) − fh, c0(hmin)Khmin (., Xj) − fhmin

⟩
and the centered variable V (h, h′) = ⟨f̂h − fh, fh′ − f ⟩. We first center the terms

⟨f̂h − f , f̂hmin − f ⟩ = ⟨f̂h − fh, f̂hmin − fhmin⟩ + V (h, hmin) + V (hmin, h) + ⟨fh − f , fhmin − f ⟩.

Now

⟨f̂h − fh, f̂hmin − fhmin⟩ =
1
n2

n∑
i,j=1

⟨c0(h)Kh2 (., Xi) − fh, c0(hmin)Khmin (., Xj) − fhmin⟩

=
1
n2

n∑
i=1

⟨c0(h)Kh2 (., Xi) − fh, c0(hmin)Khmin (., Xi) − fhmin⟩ + U(h, hmin)/n2.

Then

⟨f̂h − fh, f̂hmin − fhmin⟩ = ⟨c0(h)K 2
h , c0(hmin)Kh2min

⟩/n − ⟨f̂h, fhmin⟩/n − ⟨fh, f̂hmin⟩/n + ⟨fh, fhmin⟩/n + U(h, hmin)/n2.

Finally, we obtain

⟨f̂h − f , f̂hmin − f ⟩ = ⟨c0(h)K 2
h , c0(hmin)Kh2min

⟩/n + U(h, hmin)/n2 (A.9)

− ⟨f̂h, fhmin⟩/n − ⟨fh, f̂hmin⟩/n + ⟨fh, fhmin⟩/n (A.10)

+ V (h, hmin) + V (hmin, h) + ⟨fh − f , fhmin − f ⟩. (A.11)

We first control the last term of (A.9) involving a U-statistic. This is done in the next lemma.

Lemma B. With probability greater than 1 − 5.54|H|e−x, for any h in H,⏐⏐U(h, hmin)/n2
⏐⏐ ≤ θ ′c20 (h)c2(h)/n + Ξ ∥f ∥∞x2/(θ ′n) + Ξ c0(hmin)∥K∥∞x3/(θ ′n2).

Proof of Lemma B. We have

U(h, hmin) =

∑
i̸=j

⟨c0(h)K 2
h (., Xi) − fh, c0(hmin)Kh2min

(., Xj) − fhmin⟩

=

n∑
i=2

∑
j<i

Gh,hmin (Xi, Xj) + Ghmin,h(Xi, Xj),
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where

Gh,h′ (s, t) = ⟨c0(h)Kh2 (., s) − fh, c0(h′)Kh′2 (., t) − fh′⟩.

We apply Theorem 3.4 of [10]

Pr{|U(h, hmin)| ≥ Ξ (C
√
x + Dx + Bx3/2 + Ax2)} ≤ 5.54e−x,

with A, B, C and D defined subsequently. First, we have

∥fhmin∥∞ = ∥E(f̂hmin )∥∞ = ∥c0(hmin)
∫
Sd−1

Kh2min
(x, y)f (y)ωd(dy)∥∞

≤ c0(hmin)∥K∥∞

∫
Sd−1

f (y)ωd(dy) ≤ c0(hmin)∥K∥∞.

We have

A = ∥Gh,hmin + Ghmin,h∥∞ ≤ ∥Gh,hmin∥∞ + ∥Ghmin,h∥∞ = 2∥Gh,hmin∥∞,

because Ghmin,h = Gh,hmin . We have

∥Gh,hmin∥∞ = sup
s,t

⏐⏐⏐⏐∫
Sd−1

{
c0(h)Kh2 (u, s) − fh(u)

}
{c0(hmin)Kh2min

(u, t) − fhmin (u)}ωd(du)
⏐⏐⏐⏐

≤ sup
u,t

|c0(hmin)Kh2min
(u, t) − fhmin (u)| sup

s

∫
|c0(h)Kh2 (u, s) − fh(u)|ωd(du)

≤
{
c0(hmin)∥K∥∞ + ∥fhmin∥∞

} {
sup
s

c0(h)
∫

Kh2 (u, s)ωd(du)

+ c0(h)
∫∫

Kh2 (u, y)f (y)ωd(dy)ωd(du)
}

≤ 2c0(hmin)∥K∥∞

{
1 +

∫
f (y)c0(h)

∫
Kh2 (u, y)ωd(du)ωd(dy)

}
≤ 4c0(hmin)∥K∥∞.

Consequently we have that A ≤ 8c0(hmin)∥K∥∞ and Ax2/n2
≤ 8x2c0(hmin)∥K∥∞/n2. We define

B2
= (n − 1) sup

t
E[{Gh,hmin (t, X2) + Ghmin,h(t, X2)}2].

For any t , we have

E[G2
h,hmin

(t, X2)] = E
[[∫

{c0(h)Kh2 (u, t) − fh(u)}[c0(hmin)Kh2min
(u, X2) − E{c0(hmin)Kh2min

(u, X2)}]ωd(du)
]2]

≤ E
[∫

{c0(h)Kh2 (u, t) − fh(u)}2ωd(du)
∫

[c0(hmin)Kh2min
(u, X2) − E{c0(hmin)Kh2min

(u, X2)}]2ωd(du)
]

≤ 2
{∫

c20 (h)K
2
h2 (u, t)ωd(du) +

∫
f 2h (u)ωd(du)

}
×∫

E
[
c0(hmin)Kh2min

(u, X2) − E{c0(hmin)Kh2min
(u, X2)}

]2

ωd(du)

≤ 2
[∫

c20 (h)K
2
h2 (u, t)ωd(du) +

∫
u

{
c0(h)

∫
y
Kh2 (u, y)f (y)ωd(dy)

}2
ωd(du)

]
×

∫
E{c20 (hmin)K 2

hmin
(u, X2)}ωd(du)

≤ 4c20 (h)c2(h)c
2
0 (hmin)c2(hmin).

Therefore

B2
≤ 8(n − 1)c20 (h)c2(h)c

2
0 (hmin)c2(hmin)
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and

B2x3/n4
≤ 8c20 (h)c2(h)c

2
0 (hmin)c2(hmin)x3/n3.

Now using
√
ab ≤ θa/2 + θ−1b/2, we obtain

Bx3/2/n2
≤ θ ′c20 (h)c2(h)/(3n) + 6c20 (hmin)c2(hmin)x3/θ ′n2.

Now we have

C2
=

n∑
i=2

i−1∑
j=1

E[{Gh,hmin (Xi, Xj) + Ghmin,h(Xi, Xj)}2]

≤ Ξ n2E{G2
h,hmin

(X1, X2)}

= Ξ n2E

[[∫
{c0(h)Kh2 (u, X1) − fh(u)}{c0(hmin)Kh2min

(u, X2) − fhmin (u)}ωd(du)
]2

]

= Ξ n2E

[[ ∫
c0(h)Kh2 (u, X1)c0(hmin)Kh2min

(u, X2)ωd(du)

−

∫
c0(h)Kh2 (u, X1)

{∫
c0(hmin)Kh2min

(u, y)f (y)ωd(dy)
}

ωd(du)

−

∫
c0(hmin)Kh2min

(u, X2)
{∫

c0(h)Kh2 (u, y)f (y)ωd(dy)
}

ωd(du)

+

∫
u

{∫
y
c0(hmin)Kh2min

(u, y)f (y)ωd(dy)
}(∫

y
c0(h)Kh2 (u, y)f (y)ωd(dy)

)
ωd(du)

]2 ]
.

≤ Ξ n2(A1 + A2 + A3 + A4).

We have, for A2,

E
[∫

c0(h)Kh2 (u, X1)
{∫

c0(hmin)Kh2min
(u, y)f (y)ωd(dy)

}
ωd(du)

]2

≤ ∥f ∥2
∞
E
[∫

c0(h)Kh2 (u, X1)
{∫

c0(hmin)Kh2min
(u, y)ωd(dy)

}
ωd(du)

]2

= ∥f ∥2
∞
E
[∫

c0(h)Kh2 (u, X1)ωd(du)
]2

≤ ∥f ∥2
∞

∫ {∫
c0(h)Kh2 (u, y)ωd(du)

}2

f (y)ωd(dy) = ∥f ∥2
∞

.

With similar computations, we obtain the same bound for A3. As for A4, we get

E
[∫

u

{∫
c0(hmin)Kh2min

(u, y)f (y)ωd(dy)
}{∫

c0(h)Kh2 (u, y)f (y)ωd(dy)
}

ωd(du)
]2

≤ E
[∫

∥f ∥∞

{∫
c0(hmin)Kh2min

(u, y)ωd(dy)
}{∫

c0(h)Kh2 (u, y)f (y)ωd(dy)
}

ωd(du)
]2

≤ ∥f ∥2
∞
E
[∫∫

c0(h)Kh2 (u, y)f (y)ωd(dy)ωd(du)
]2

≤ ∥f ∥2
∞

{∫
f (y)

∫
c0(h)Kh2 (u, y)ωd(du)ωd(dy)

}2

= ∥f ∥2
∞

.

Hence

C2
≤ Ξ n2E

[{∫
c0(h)Kh2 (u, X1)c0(hmin)Khmin (u, X2)ωd(du)

}2
]

+ Ξ ∥f ∥2
∞

× n2.
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It remains to bound A1. We have, using the Cauchy–Schwarz inequality,

E

[{∫
c0(h)Kh2 (u, X1)c0(hmin)Khmin (u, X2)ωd(du)

}2
]

=

∫
y

∫
x

{∫
u
c0(h)Kh2 (u, x)c0(hmin)Kh2min

(u, y)ωd(du)
}2

f (x)ωd(dx)f (y)ωd(dy)

≤ ∥f ∥∞

∫
y

∫
x

{ ∫
u
c20 (h)K

2
h2 (u, x)c0(hmin)Kh2min

(u, y)ωd(du)×∫
u
c0(hmin)Kh2min

(u, y)ωd(du)
}

ωd(dx)f (y)ωd(dy)

≤ ∥f ∥∞

∫
y

∫
x

∫
u
c20 (h)K

2
h2 (u, x)c0(hmin)Kh2min

(u, y)ωd(du)ωd(dx)f (y)ωd(dy)

≤ ∥f ∥∞c20 (h)c2(h).

Finally,

C ≤ Ξ n∥f ∥1/2
∞

c0(h)
√
c2(h) + Ξ ∥f ∥∞n.

Hence, given that x ≥ 1, we get

C
√
x/n2

≤ Ξ ∥f ∥1/2
∞

c0(h)
√
c2(h)

√
x/n + Ξ ∥f ∥∞

√
x/n

≤ θ ′c20 (h)c2(h)/(3n) + Ξ ∥f ∥∞x/(θ ′n) + Ξ ∥f ∥∞

√
x/n

≤ θ ′c20 (h)c2(h)/(3n) + Ξ ∥f ∥∞x/(θ ′n).

Now let us consider

S =

{
a = (ai)2≤i≤n, b = (bi)1≤i≤n−1 :

n∑
i=2

E{a2i (Xi)} ≤ 1,
n−1∑
i=1

E{b2i (Xi)} ≤ 1

}
.

We have

D = sup
(a,b)∈S

⎡⎣ n∑
i=2

i−1∑
j=1

E{(Gh,hmin (Xi, Xj) + Ghmin,h(Xi, Xj))ai(Xi)bj(Xj)}

⎤⎦ .

We have, for (a, b) ∈ S ,
n∑

i=2

i−1∑
j=1

E{Gh,hmin (Xi, Xj)ai(Xi)bj(Xj)}

≤

n∑
i=2

i−1∑
j=1

E
{∫

|c0(h)Kh2 (u, Xi) − fh(u)||ai(Xi)||c0(hmin)K (u, Xj) − fhmin (u)||bj(Xj)|ωd(du)
}

≤

n∑
i=2

n−1∑
j=1

∫
E
{
|c0(h)Kh2 (u, Xi) − fh(u)||ai(Xi)|

}
E{|c0(hmin)Kh2min

(u, Xj) − fhmin (u)||bj(Xj)|}ωd(du),

and for any u, using the Cauchy–Schwarz inequality, we get

n∑
i=2

E
{
|c0(h)Kh2 (u, Xi) − fh(u)||ai(Xi)|

}
≤

√
n

√ n∑
i=2

E{|c0(h)Kh2 (u, Xi) − fh(u)|2}E{a2i (Xi)}

≤
√
n

√ n∑
i=2

E{c20 (h)K
2
h2
(u, Xi)}E{a2i (Xi)}

≤
√
n

√∥f ∥∞c20 (h)c2(h)
n∑

i=2

E{a2i (Xi)}

≤

√
c20 (h)c2(h)

√
n∥f ∥∞.



264 T.M. Pham Ngoc / Journal of Multivariate Analysis 173 (2019) 248–267

Now since∫
fhmin (u)ωd(du) = 1,

and ∫
E{c0(hmin)Kh2min

(u, Xj)}ωd(du) = 1,

we have

n−1∑
j=1

∫
E{|c0(hmin)Kh2min

(u, Xj) − fhmin (u)|ωd(du)|bj(Xj)|} ≤ 2
n−1∑
j=1

E{|bj(Xj)|} ≤ 2
√
n

√n−1∑
j=1

E{|b2j (Xj)|} ≤ 2
√
n.

Finally,
n∑

i=2

i−1∑
j=1

E{Gh,hmin (Xi, Xj)ai(Xi)bj(Xj)} ≤ 2n
√

∥f ∥∞

√
c20 (h)c2(h),

and

Dx/n2
≤ 4

√
∥f ∥∞

√
c20 (h)c2(h)/nx ≤ θ ′c20 (h)c2(h)/(3n) + 12∥f ∥∞x2/(θ ′n).

In summary, we have proved

Ax2/n2
≤ 8x2c0(hmin)∥K∥∞/n2, Bx3/2/n2

≤ θ ′c20 (h)c2(h)/(3n) + 6c20 (hmin)c2(hmin)x3/n2θ ′

C
√
x/n2

≤ θ ′c20 (h)c2(h)/(3n) + Ξ ∥f ∥∞x/(θ ′n), Dx/n2
≤ θ ′c20 (h)c2(h)/(3n) + 12∥f ∥∞x2/(θ ′n).

But

c20 (hmin)c2(hmin) = c0(hmin)
∫

Kh2min
(x, y)c0(hmin)Kh2min

(x, y)ωd(dy) ≤ c0(hmin)∥K∥∞.

Thus finally, with probability larger than 1 − 5.54|H|e−x, we have, for any h ∈ H,

|U(h, hmin)/n2
| ≤ θ ′c20 (h)c2(h)/n + Ξ ∥f ∥∞x2/(θ ′n) + Ξ c0(hmin)∥K∥∞x3/(θ ′n2).

This ends the proof of Lemma B. □

Back to (A.9), we have the following control.

Lemma C. With probability greater that 1 − 9.54|H|e−x, for any h ∈ H,⏐⏐⏐⟨f̂h − f , f̂hmin − f ⟩ − ⟨c0(h)Kh2 , c0(hmin)Kh2min
⟩/n

⏐⏐⏐ ≤ θ ′
∥fh − f ∥2

+ θ ′c20 (h)c2(h)/n

+{θ ′/2 + 1/(2θ ′)}∥fhmin − f ∥2
+ Cx2∥f ∥∞/(θ ′n) + C(K )c0(hmin)x3/n2, (A.12)

where C is an absolute constant and C(K ) a constant only depending on K .

Proof of Lemma C. We have first to control (A.10) and (A.11), namely

⟨f̂h, fhmin⟩/n − ⟨f̂h, fhmin⟩/n + ⟨fh, fhmin⟩/n

and

V (h, hmin) + V (hmin, h) + ⟨fh − f , fhmin − f ⟩.

Let h and h′ be fixed. We have

⟨f̂h, fh′⟩ =
1
n

n∑
i=1

∫
c0(h)Kh2 (x, Xi)fh′ (x)ωd(dx).

Therefore,

|⟨f̂h, fh′⟩| ≤ ∥fh′∥∞ =

∫
c0(h)Kh′2 (u, y)f (y)ωd(dy)


∞

≤ ∥f ∥∞,

and

|⟨fh, fhmin⟩| ≤ ∥fh∥∞

∫
fhmin (u)ωd(du) ≤ ∥f ∥∞,
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which gives the control of (A.10), viz.

|⟨f̂h, fhmin⟩/n − ⟨f̂h, fhmin⟩/n + ⟨fh, fhmin⟩/n| ≤ 3∥f ∥∞/n.

It remains to bound the three terms of (A.11). We get

V (h, h′) = ⟨f̂h − fh, fh′ − f ⟩ =
1
n

n∑
i=1

[
gh,h′ (Xi) − E{gh,h′ (Xi)}

]
with gh,h′ (x) = ⟨c0(h)Kh2 (·, x), fh′ − f ⟩. We have ∥gh,h′∥∞ ≤ ∥fh′ − f ∥∞ ≤ 2∥f ∥∞.

Furthermore using the Cauchy–Schwarz inequality, we obtain

E{g2
h,h′ (X1)} =

∫
y

[∫
x
c0(h)Kh2 (x, y){fh′ (x) − fh(x)}ωd(dx)

]2

f (y)ωd(dy)

≤ ∥f ∥∞

∫
y

[∫
x
c0(h)Kh2 (x, y){fh′ (x) − fh(x)}ωd(dx)

]2

ωd(dy)

≤ ∥f ∥∞c0(h)
∫
y

[∫
x
Kh2 (x, y){fh′ (x) − fh(x)}2ωd(dx)

]
×

{
c0(h)

∫
x
Kh2 (x, y)ωd(dx)

}
ωd(dy)

≤ ∥f ∥∞c0(h)
∫
y

∫
x
Kh2 (x, y){fh′ (x) − fh(x)}2ωd(dx)ωd(dy)

≤ ∥f ∥∞∥fh′ − fh∥2.

Consequently, with probability larger than 1 − 2e−x, Bernstein’s inequality [20] leads to

|V (h, h′)| ≤

√
2x∥f ∥∞∥fh′ − f ∥2/n + 2x∥f ∥∞/(3n) ≤ θ ′

∥fh′ − f ∥2/2 + C∥f ∥∞x/(θ ′n).

The bound on V (h, h′) obtained above is first applied with h′
= hmin; then we invert the roles of h and hmin. Besides, we

have

|⟨fh − f , fhmin − f ⟩| ≤ θ ′
∥fh − f ∥2/2 + ∥fhmin − f ∥2/(2θ ′).

Finally using Lemma B, we get with probability larger than 1 − 9.54|H|e−x,

|⟨f̂h − f , f̂hmin − f ⟩ − ⟨c0(h)Kh2 , c0(hmin)Kh2min
⟩/n|

≤ θ ′c20 (h)c2(h)/n + Ξ ∥f ∥∞x2/(θ ′n) + Ξ c0(hmin)∥K∥∞x3/θ ′n2

+ 3∥f ∥∞/n + {θ ′/2 + 1/(2θ ′)}∥fhmin − f ∥2
+ 2∥f ∥∞x/(θ ′n) + θ ′

∥fh − f ∥2

≤ θ ′
∥fh − f ∥2

+ θ ′c20 (h)c2(h)/n + {θ ′/2 + 1/(2θ ′)}∥fhmin − f ∥2
+ Cx2∥f ∥∞/(θ ′n) + C(K )c0(hmin)x3/n2,

which completes the proof of Lemma C. □

Now Proposition A gives with probability larger than 1 − Ξ |H|e−x, for any h ∈ H,

∥f − fh∥2
+ c20 (h)c2(h)/n ≤ 2∥f − f̂h∥2

+ C2(K )∥f ∥∞x2/n,

where C2(K ) depends only on K . Hence by applying Lemma C with h first and then ĥ we obtain with probability larger
than 1 − Ξ |H|e−x, for any h ∈ H,

|⟨f̂h − f , f̂hmin − f ⟩ − ⟨c0(h)Kh2 , c0(hmin)Kh2min
⟩/n − ⟨f̂ĥ − f , f̂hmin − f ⟩ + ⟨c0(ĥ)Kĥ2 , c0(hmin)Kh2min

⟩/n|

≤ 2θ ′
∥f̂h − f ∥2

+ 2θ ′
∥f̂ĥ − f ∥2

+ (θ ′
+ 1/θ ′)∥fhmin − f ∥2

+ C̃(K ){∥f ∥∞x2/n + x3c0(hmin)/n2
}/θ ′,

(A.13)
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where C̃(K ) is a constant only depending on K . Now back to (A.8) and using (A.13), we have

∥f̂ĥ − f ∥2
≤ ∥f̂h − f ∥2

+ penλ(h)

− 2{⟨f̂h − f , f̂hmin − f ⟩ − ⟨c0(h)Kh2 , c0(hmin)Kh2min
⟩/n} − 2⟨c0(h)Kh2 , c0(hmin)Kh2min

⟩/n

− penλ(ĥ) + 2{⟨f̂ĥ − f , f̂hmin − f ⟩ − ⟨c0(h)Kĥ2 , c0(hmin)Kh2min
⟩/n}

+ 2⟨c0(ĥ)Kĥ2 , c0(hmin)Kh2min
⟩/n

≤ ∥f̂h − f ∥2
+ penλ(h)

− 2⟨c0(h)Kh2 , c0(hmin)Kh2min
⟩/n − penλ(ĥ) + 2⟨c0(ĥ)Kĥ2 , c0(hmin)Kh2min

⟩/n

+ 4θ ′
∥f̂h − f ∥2

+ 4θ ′
∥f̂ĥ − f ∥2

+ 2(θ ′
+ 1/θ ′)∥fhmin − f ∥2

+ C̃(K ){∥f ∥∞x2/n + x3c0(hmin)/n2
}/θ ′.

Choosing θ ′
= θ/4 yields the result. This completes the proof of Proposition B. □

The next proposition gives a bound for the bias term (see [13]) that is used to obtain rates of convergence. Define for
f : Sd−1

→ R and s even,

Dsf =

s/2∑
i=1

2i
(2i)!

γ2i,s/2−iD2if ,

where γ0 = 1 and

γi =

∑
α1+···+αd−1=i

(−1)α1

(2α1 + 1)!
· · ·

(−1)αd−1

(2αd−1 + 1)!
.

Proposition C. Assume that f ∈ F2(s). Let K be a class s kernel, where s ≥ 2 is even. Then

lim
h→0

∥h−s
|E(f̂h) − f | − |α−1

0 (K )αs(K )Dsf |∥ = 0.

For d = 3 and for von Mises kernel, SPCO algorithm turns to be simple to compute. Straightforward computations
yield the next lemma, which specifies the various quantities involved in the procedure.

Lemma D. For S2 and K (x) = e−x, we have

∥f̂h − f̂hmin∥
2

=
4πc20 (h)

n2 e−2/h2h2
∑
i,j

sinh(|Xi + Xj|/h2)
|Xi + Xj|

+
4πc20 (hmin)

n2 e−2/h2minh2
min

∑
i,j

sinh(|Xi + Xj|/h2
min)

|Xi + Xj|

−
8π
n2 c20 (h)c

2
0 (hmin)e−1/h2e−1/h2min

∑
i,j

sinh(|Xi/h2
+ Xj/h2

min|)
|Xi/h2 + Xj/h2

min|
,

with c0(h)−1
= 4πe−1/h2h2 sinh(1/h2) and c2(h) = 2πe−2/h2h2 sinh(2/h2).
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