期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:91
Quantile regression for longitudinal data
Article
Koenker, R
关键词: quantile regression;    penalty methods;    shrinkage;    L-statistics;    random effects;    robust estimation;    hierarchical models;   
DOI  :  10.1016/j.jmva.2004.05.006
来源: Elsevier
PDF
【 摘 要 】

The penalized least squares interpretation of the classical random effects estimator suggests a possible way forward for quantile regression models with a large number of fixed effects. The introduction of a large number of individual fixed effects can significantly inflate the variability of estimates of other covariate effects. Regularization, or shrinkage of these individual effects toward a common value can help to modify this inflation effect. A general approach to estimating quantile regression models for longitudinal data is proposed employing l(1) regularization methods. Sparse linear algebra and interior point methods for solving large linear programs are essential computational tools. (C) 2004 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2004_05_006.pdf 257KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次