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Abstract

The penalized least squares interpretation of the classical random effects estimator suggests a
possible way forward for quantile regression models with a large number of “fixed effects”. The
introduction of a large number of individual fixed effects can significantly inflate the variability of
estimates of other covariate effects. Regularization, or shrinkage of these individual effects toward
a common value can help to modify this inflation effect. A general approach to estimating quantile
regression models for longitudinal data is proposed employing�1 regularization methods. Sparse linear
algebra and interior point methods for solving large linear programs are essential computational tools.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Recent contributions to the literature on linear and nonlinear mixed models have empha-
sized the strong link with penalty methods for nonparametric function estimation. Shrinkage
of highly overparameterized models toward simpler, plausible models suggested by prior
smoothness considerations shares many common features with the shrinkage of nominal
effects toward common values based on prior beliefs about their exchangeability. The domi-
nant paradigm in the random effects, mixed model literature has been a Gaussian structure in
which covariates exert a pure location shift effect on the response variable. In some applica-
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tions it is of interest to explore a broader class of covariate effects, while still accounting for
individual specific effects. Such models enable the investigator to explore various forms of
heterogeneity associated with the covariates under less stringent distributional assumptions.

The almost exclusive focus on least squares estimators under Gaussian conditions for lon-
gitudinal data analysis can be taken as a challenge: Can a more flexible, more robust approach
to longitudinal data analysis be forged outside the Gaussian random effects framework? I
will argue that quantile regression might play a constructive role in such a development.

The construction of infant and adolescent growth charts provides a motivating application
in which a functional component as well as ordinal and nominal factors may appear. It is
of obvious importance to construct reference growth charts that accurately represent the
conditional quantiles of the growth distribution without unduly constraining the estimation
process by unverifiable distributional assumptions. Several authors including Cox and Jones
in the discussion of Cole[2] have suggested that quantile regression methods may offer
advantages over parametric approaches to the analysis of such growth charts. A challenge
in these applications is to respect the longitudinal structure of most growth data allowing
individual specific effects while allowing covariates to play a more flexible role.

The quantile regression problems that will be considered generally involve a large num-
ber of cross-sectional “individuals” observed over a relatively short number of time periods.
Typical reference growth charts are based on several hundred individuals with about 10–20
measurements per individual. When each cross-sectional observation is allowed an indi-
vidual specific location shift effect the parametric dimension of the resulting estimation
problem can be quite large. Computational methods that exploit the inherently sparse na-
ture of the linear algebra for interior point solution of the resulting linear programming
problems play an essential role.

2. Models and methods

Consider the classical linear random effects model,

yij = x�
ij � + �i + uij j = 1, . . . , mi, i = 1, . . . , n, (2.1)

which we will write in matrix form as,

y = X� + Z� + u.

The matrixZ represents an incidence matrix that identifies then distinct individuals in the
sample. In the growth curve setting the subscripti would index individual patients, and the
subscriptj would index themi distinct measurements made on theith patient. We begin
by recalling an instructive characterization of the random effects estimator under Gaussian
conditions.

2.1. Gaussian random effects as penalized least squares

Supposeuand� are independent Gaussian vectors withu ∼ N (0, R) and� ∼ N (0,Q).
Observing thatv = Z� + u has covariance matrix

Evv� = R + ZQZ�
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we can immediately deduce that the minimum variance unbiased estimator of� is,

�̂ = (X�(R + ZQZ�)−1X)−1X�(R + ZQZ�)−1y.

This estimator is certainly not very appealing from a robustness standpoint, but the opti-
mization problem that gives rise tô� is suggestive of a larger class of possible candidate
estimators under non-Gaussian conditions.
Proposition. �̂ solvesmin(�,�) ‖y − X� − Z�‖2

R−1 + ‖�‖2
Q−1, where‖x‖2

A = x�Ax.
Proof. Differentiating we obtain the normal equations,

X�R−1X�̂ + X�R−1Z�̂ = X�R−1y

Z�R−1X�̂ + (Z�R−1Z + Q−1)�̂ = Z�R−1y.

Solving, we havê� = (X��−1X)−1X��−1y where

�−1 = R−1 − R−1Z(Z�R−1Z + Q−1)−1Z�R−1.

But � = R + ZQZ�, see e.g. Rao[15, p. 33]. �
This result has a long history. Robinson[16] attributes the normal equations above to

Henderson[5]. Goldberger[4] introduced the terminology “best linear unbiased predictor”,
subsequently rendered as BLUP, to describe the estimator�̂ and its associated “estimator”
�̂ of the random effects. The implicit estimation of the random effects may appear strange,
but viewing the random effects estimator as a penalized least squares estimator opens the
door to the consideration of alternative penalties. By shrinking the unconstrained�̂’s toward
a common value we achieve not only improved performance of the individual fixed-effect
estimates, but also improve the performance of the estimate of�. In the Bayesian paradigm
the penalty formulation is natural, as emphasized by Lindley and Smith[13], and many
subsequent authors. Alternatives to the Gaussian penalty‖�‖2

Q−1, such as those proposed
below would simply reflect differences in prior beliefs about the distribution of the�’s.

2.2. Quantile regression with fixed effects

Contemplating the extension of the model (2.1) to models for conditional quantile func-
tions we must first confront the question: What role should the�’s play? Generally, the�’s
would be intended to capture some individual specific source of variability, or “unobserved
heterogeneity,” that was not adequately controlled for by other covariates in the model.
For example, in a study of the effect of a dietary intervention on blood pressure, it would
be desirable to estimate departures from individuals’ idiosyncratic levels. If the number
of observationsmi were large for each individual then we might even hope to estimate a
distributionalshift �i (�) for each individual. This would certainly be useful forgroupsof
individuals: a distributional shift for men versus women, or for blacks versus whites. How-
ever, in most applications themi , the number of observations on each individual, would
be relatively modest and then it is quite unrealistic to attempt to estimate a�-dependent,
distributional, individual effect. At best we may be able to estimate an individual specific
location-shift effect, and even this may strain credulity.
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We will consider the following model for the conditional quantile functions of the re-
sponse of thej th observation on theith individualyij ,

Qyij (�|xij ) = �i + x�
ij �(�) j = 1, . . . mi, i = 1, . . . , n. (2.2)

In this formulation the�’s have a pure location shift effect on the conditional quantiles of
the response. The effects of the covariates,xij are permitted to depend upon the quantile,
�, of interest, but the�’s do not.

To estimate the model (2.2) for several quantiles simultaneously, we propose solving,

min
(�,�)

q∑
k=1

n∑
j=1

mi∑
i=1

wk��k (yij − �i − x�
ij �(�k)) (2.3)

where��(u) = u(� − I (u < 0)), denotes the piecewise linear quantile loss function of
Koenker and Bassett[11]. The weightswk control the relative influence of theq quantiles
{�1, . . . , �q}, on the estimation of the�i parameters. The choice of the weights,wk, and
the associated quantiles�k, is somewhat analogous to the choice of discretely weighted L-
statistics, as for example in Mosteller[14]. In the Monte-Carlo section below we use Tukey’s
trimean as a prototype assigning weights, 0.25, 0.5, and 0.25 to the quartiles. Koenker[10]
considered an analogous situation in which only the intercept parameter was permitted
to depend upon� and the slope parameters associated with the included covariates were
constrained to be identical for several�’s. In this case the slope parameters are estimated
were estimated as regression L-statistics. In the present instance, it is the� parameters that
are estimated as discretely weighted L-statistics.

Solving the problem (2.3) may appear somewhat quixotic when the dimensionsn,mand
q are large. In least squares applications the usual strategy would be to transformy andX
to deviations from individual means, and then compute�̂ from the transformed data. For
quantile regression this decomposition of projections is not available and we are required to
deal directly with the full problem. Fortunately, in typical applications the problem is quite
sparse, that is the design matrix of the full problem is mostly zeros. Storing the dense version
of this matrix with all the zeros treated as double precision floats may well be infeasible,
but standard sparse matrix storage schemes only require space for the non-zero elements
and their indexing locations. This dramatically reduces the memory requirements in large
problems.

Interior point methods for solving (2.3) proceed iteratively by solving a sequence of
diagonally weighted least squares steps using a Cholesky factorization. The sparsity of the
design is typically preserved quite well in this factorization, as noted by Saunders[18],
and the computational effort is roughly proportional to the number of non-zero elements.
Implementations of this approach for the public domain dialect R, Ihaka and Gentleman
[6], of Chambers[1] S language are discussed in Koenker and Ng[12] and are available on
CRAN at www.r-project.org.

2.3. Penalized quantile regression with fixed effects

We have seen that the optimal estimator for the Gaussian prototype model (2.1) involves
shrinking the�̂’s toward a common value. When thexij component of the model contains
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an intercept, as we will henceforth assume, this common value can be taken to be the
conditional central tendency of the response at a point determined by the centering of the
other covariates. In the quantile regression version of the model (2.2) this would be some
corresponding conditional quantile of the response, although we would require further
conditions including symmetry of the�k ’s and thewk ’s to be specified.

Particularly whenn is large relative to themi ’s shrinkage may be advantageous in con-
trolling the variability introduced by the large number of estimated� parameters. For the
quantile loss function,�� it is convenient to consider the�1 penalty,

P(�) =
n∑

i=1

|�i |

in place of the conventional Gaussian penalty. This choice maintains the linear programming
form of the problem and also preserves the sparsity of the resulting design matrix. Several
authors, notably Tibshirani[20] and Donoho et al.[3], have pointed out that�1 shrinkage
offers some statistical advantages over more conventional Gaussian�2 penalties in addition
to its computational advantages.

We will consider estimators solving the penalized version of (2.3)

min
(�,�)

q∑
k=1

n∑
j=1

mi∑
i=1

wk��k (yij − �i − x�
ij �(�k)) + �

n∑
i=1

|�i |. (2.4)

For � → 0 we obtain the fixed effects estimator described above, while as� → ∞ the
�̂i → 0 for all i = 1,2, . . . , n and we obtain an estimate of the model purged of the fixed
effects. Note that since thexij component is assumed to contain an intercept, in either case
we will also haveq, �-specific, estimates of the intercept. If we consider the special case
thatmi ≡ m for all i, we can write the design matrix for a single quantile as,

[X...In ⊗ em]
whereX = (xij ) is nmby p, andem denotes anm-vector of ones. The design matrix for
q > 1 may be written as,

[W ⊗ X
...w ⊗ (In ⊗ em)].

Appending the penalty term we have the augmented design matrix,[
W ⊗ X w ⊗ (In ⊗ em)

0 �In

]
.

which has dimensionqnm + n by qp + n. The corresponding response vector isỹ =
((w ⊗ y)�0�

n )
�. These dimensions may seem even more daunting than before, but again

we should emphasize that the sparsity of the design matrix comes to the rescue. Even quite
large problems of this type can be handled successfully on rather modest machines.
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3. Asymptopia

The existence of the parameter� whose dimension,n, is tending to infinity raises some
fundamentally new issues for the asymptotic analysis of the quantile regression estimator.
To address these issues it seems prudent to begin with a relatively simple setting in which
we focus on estimation of a single conditional quantile function. We will restrict attention
to balanced designs withmi = m for all i = 1, . . . , n. Then, sinceZ = In ⊗ em, we
haveZ�Z = mIn. We will begin by considering the fixed effect estimator, and then turn to
the penalized estimator. Bothm andn will be assumed to tend to infinity. Convergence in
distribution will be denoted by the symbol�.

Consider the objective function

Vmn(�) =
m∑

j=1

n∑
i=1

��(yij − �ij (�) − z�
ij�0/

√
m − x�

ij �1/
√
mn) − ��(yij − �ij (�))]

where�ij (�) = �i + x�
ij �(�). Note that

�̂ =
(

�̂0

�̂1

)
=
( √

m(�̂ − �)√
mn(�̂(�1) − �(�1))

)

minimizes the functionVmn. We will impose the following regularity conditions:
A1. Theyij are independent with conditional distribution functions,Fij , givenxij , and

differentiable conditional densities, 0< fij < ∞, with bounded derivativesf ′
ij , at�ij (�),

for j = 1, . . . , m, i = 1, . . . , n,
A2. Let 	 = �(1 − �) and denote
 = diag(fij (�ij (�))). The limiting forms of the

following matrices are positive definite:

D0 = lim
m→∞
n→∞

	
m

(
Z�Z Z�X/

√
n

X�Z/
√
n X�X/n

)

D1 = lim
m→∞
n→∞

m−1
(

Z�
Z Z�
X/
√
n

X�
Z/
√
n X�
X/n

)
.

A3. max1� i� n
1� j �m

||xij || < M.

The condition A1 is now quite familiar in the quantile regression literature. Condition A2
is not, but if one supposes for a moment that the model is of the pure location shift form (2.1),
thenD1 simplifies somewhat and A2 reduces to a condition on the matricesX�X/(mn) and
Z�Z/m. We have seen that the latter is equal toIn, and the former condition is again familiar.
If Z�X = 0 so that there is no “between” variability in thex’s, then the expressions simplify
considerably, but this case is quite atypical, and generally we would expect that there would
be some non-orthogonality between the individual effects and the other covariates and thus
some potential improvement in the estimation of�’s due to control of the�’s by shrinkage
toward a common value. These expectations are confirmed in the next section through a
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small simulation experiment. Condition A3 could be relaxed at the cost of some added
complication of the argument.

Theorem 1. Under conditionsA1–A3,withna/m → 0 for somea > 0, the�̂1 component
of the minimizer, �̂, converges in distribution to a Gaussian random vector with mean zero
and covariance matrix given by the lower p by p block of the matrixD−1

1 D0D
−1
1 .

Proof. Two distinct arguments will be given. The first should be regarded as purely heuristic,
since it overlooks the complications introduced by the infinite dimensional nature of�. (An
alternative view of the first argument is that it applies to situations in whichm tends to
infinity, andn is fixed.) The second explicitly concentrates out the� parameter focusing
on the finite dimensional asymptotic behavior of�̂(�). The equivalence between the two
results is established with the aid of a matrix identity formulated as Lemma 1.
Part 1. The functionVmn can be decomposed into two parts using the identity of

Knight [7],

��(u − v) − ��(u) = −v�� +
∫ v

0
(I (u� s) − I (u�0)) ds

where��(u) = � − I (u < 0) denotes the quantile influence function. We will write,

Vmn(�) = V (1)
mn (�) + V (2)

mn (�)

wherevij = z�
ij�0 + x�

ij �1/
√
n and,

V (1)
mn (�) = −m−1/2

∑
j

∑
i

��(yij − �ij (�k))vij

V (2)
mn (�) = −m−1/2

∑
j

∑
i

∫ vij

0
(I (yij � �ij (�) + t/

√
m) − I (yij � �ij (�))) dt.

The first term is asymptotically Gaussian. Let�k = diag(��(yij −�ij (�))) and note that
E�emne

�
mn� = 	Imn. Conditions A2 and A3 imply a Lindeberg condition and we have,

V (1)
mn (�) = −m−1/2(Z���0 + X���1/

√
n)�− B�.

The second term is asymptotically quadratic in�. Note that

EV (2)
mn (�) = m−1

∑
j

∑
i

∫ vij

0

√
m(Fij (�ij (�) + t/

√
m) − Fij (�ij (�))) dt

= m−1
∑
j

∑
i

∫ vij

0
fij (�ij (�))t dt + o(1)

= 1

2m

∑
j

∑
i

fij (�ij (�))(z
�
ij�0 + x�

ij �/
√
n)2 + o(1)

= 1

2m
(��

0 Z�
Z�0 + 2��
0 Z�
X�1/

√
n + ��

1 X�
X�1/n) + o(1)

→ 1

2
��D1�.
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The variance ofV (2)
mn (�) converges to zero by Condition A3. The limiting form of the

objective function is thus

V0(�) = −��B + 1

2
��D1�

whereB is a zero mean Gaussian vector with covariance matrixD0. In finite-dimensional
settings, i.e. withn fixed in the present instance, convexity of the objective function,Vmn,
and the uniqueness of the minimum ofV0, yields uniformity in�. so �̂ converges to the
argmin ofV0 completing the argument as in Knight and Fu[9].
Part 2. Given the infinite dimensional nature of� there may be some legitimate doubt

about the validity of the foregoing approach. A more rigorous argument can be made by
explicitly replacing thê�’s by their Bahadur representation and thereby concentrating out
their effect, expressing the objective function solely in terms of the finite dimensional
parameter�. Using the reparameterization of the previous argument, note that for any fixed
�1, we can consider the behavior of�̂0i , which depends only on themobservations for the
ith subsample. It follows from the argument of Ruppert and Carroll[17] that uniformly for
‖ �1 ‖< 
1 and|�0i | < 
0,

‖ gi(�0i , �1) − gi(0,0) − E(gi(�0i , �1) − gi(0,0)) ‖= op(1)

where

gi(�0i , �1) = −m−1/2
n∑

j=1

��(yij − �ij (�) − x�
ij �1/

√
nm − �0i/

√
m)

with ��(u) = � − I (u < 0). Expanding we have,

E(gi(�0i , �1))=m−1/2
n∑

j=1

[Fij (�ij (�) + x�
ij �1/

√
nm + �0i/

√
m) − �]

=m−1/2
n∑

j=1

fij (�ij (�))[x�
ij �1/

√
nm + �0i/

√
m] + op(1).

Optimality of the�̂0i implies thatgi(�0i , �1) = o(m−1), letting f̄i = m−1∑m
j=1 fij ,

�̂0i = f̄−1
i


m−1

m∑
j=1

fij (�ij (�))x
�
ij �1/

√
n + m−1/2

m∑
j=1

��(yij (�) − �ij (�))




+Rmi.

Substituting thê�0i ’s, we will denote,

G(�1) = 1√
mn

n∑
i=1

m∑
j=1

xij��(yij (�) − �ij (�) − x�
ij �1/

√
nm + �̂0i/

√
m).

Again, uniformly for‖ �1 ‖< 
1, one can show that,

‖ G(�1) − G(0) − E(G(�1) − G(0)) ‖= op(1),
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and at the minimizer,G(�̂1) = o((mn)−1). Expanding, as above,

E(G(�1) − G(0))= 1√
mn

n∑
i=1

m∑
j=1

fij xij (x
�
ij �1/

√
nm + �̂0i/

√
m)

= 1

mn

n∑
i=1

m∑
j=1

fij xij


x�

ij �1 − f̄−1
i m−1

m∑
j=1

fij x
�
ij �1




+ 1√
mn

n∑
i=1

m∑
j=1

fij xij f̄
−1
i m−1/2

m∑
j=1

��(yij − �ij (�))

+ 1√
mn

n∑
i=1

m∑
j=1

fij xijRmi/
√
m + O(m−1/2)

where the order of the final term is controlled by the bound on the derivative of the condi-
tional density. Setting the foregoing expression equal toG(0) and solving for�̂1 yields, in
somewhat more convenient matrix notation,

�̂1 = (X�M�
Z̃


M
Z̃
X)−1(X�M�

Z̃
� + Rmn)

whereM
Z̃

= I −P
Z̃

,P
Z̃

= Z(Z�
Z)−1
, and� denotes themnvector(�(yij −�ij (�))),
and

Rmn = 1√
mn

n∑
i=1

m∑
j=1

fij xijRmi/
√
m + O(m−1/2).

The remainder term,Rmn, has dominant component that comes from the Bahadur repre-
sentation of thê�’s. By A1 and A3, we have for a generic constant K,

Rmn = m−1/4 K√
n

n∑
i=1

R0i + op(m
−1/4).

The analysis of Knight[8] shows that the summands converge in distribution, that is as
m → ∞, we havem1/4Rmi�R0i , where theR0i are functionals of Brownian motion.
Independence of theyij , and the condition on the growth ofmensures that contribution of
the remainder is negligible. Denoting the limiting form of the matrices:

D̃1 = lim
m→∞
n→∞

(mn)−1X�M�
Z̃


M
Z̃
X

and

D̃0 = lim
m→∞
n→∞

	
mn

X�M�
Z̃
M

Z̃
X
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we have, neglecting the penalty term of the objective function,

�̃1�N (0, D̃−1
1 D̃0D̃

−1
1 ).

The next lemma verifies that this form of the covariance matrix is identical to the lower
diagonal block of the matrixD−1

1 D0D
−1
1 derived previously. �

Lemma 1. (D−1
1 D0D

−1
1 )22 = D̃−1

1 D̃0D̃
−1
1 .

Proof. Standard partitioned inverse formulae give,

mn(D−1
1 D0D

−1
1 )22 = (−FE−1 E−1

) ( Z�Z Z�X
X�Z X�X

)(−FE−1

E−1

)
=E−1[F�Z�ZF − X�ZF − F�Z�X + X�X]E−1

whereE = X�
X−X�
Z(Z�
Z)−1Z�
X = mnD̃1, andF = (Z�
Z)−1Z�
X =
P
Z̃
X. The result then follows by noting that the term in square brackets is equal to

X�M�
Z̃
M

Z̃
X. �

3.1. Asymptotics for the penalized quantile regression estimator

To explore the asymptotic behavior of the penalized quantile regression estimator solving
(2.3) we will maintain the assumption of a balanced design and consider simultaneously
estimatingq quantiles. Let

Vmn(�)=
q∑

k=1

m∑
j=1

n∑
i=1

wk[��k (yij − �ij (�k) − z�
ij�0/

√
m − x�

ij �k/
√
mn)

−��k (yij − �ij (�k))] + �m
n∑

i=1

|�i − �0i/
√
m| − |�i |

where�ij (�k) = �i + x�
ij �(�k). Note that

�̂ =




�̂0

�̂1
...

�̂q


 =




√
m(�̂ − �)√

mn(�̂(�1) − �(�1))
...√

mn(�̂(�q) − �(�q))




minimizes the functionVmn. We will impose the modified regularity conditions:
B1. Theyij are independent with conditional distribution functions,Fij , givenxij , and

differentiable conditional densities, 0< fij < ∞, with bounded derivativesf ′
ij , at�ij (�),

for j = 1, . . . , m, i = 1, . . . , n,
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B2. Let � denote theq by q matrix with typical element�k ∧ �l − �k�l and 
k =
diag(fij (�ij (�k))). The limiting forms of the following matrices are positive definite:

D0 = lim
m→∞
n→∞

m−1
(

w��wZ�Z w��W ⊗ Z�X/
√
n

W�w ⊗ X�Z/
√
n W�W ⊗ X�X/n

)

D1 = lim
m→∞
n→∞

m−1




∑
wkZ

�
kZ w1Z
�
1X/

√
n · · · wqZ

�
qX/
√
n

w1X
�
1Z/

√
n w1X

�
1X/n · · · 0
...

. . .
...

wqX
�
qZ/

√
n 0 · · · wqX

�
qX/n


 .

B3. max1� i� n
1� j �m

||xij || < M.

Theorem 2. Under conditionsB1–B3,provided that�m/
√
m → �0, andna/m → 0 for

somea > 0, the first component̂�1 minimizingVmn has the same limiting distribution as
the first component of the minimizer of,

V0(�) = −��B + 1

2
��D1� + �0�

�s

where B is a zero mean Gaussian vector with covariance matrixD0, and s = (s�
0 0�

pq)
�

ands0 = (sgn(�i )).

Proof. A sketch of the heuristic form of the argument for the previous result is provided.
The functionVmn can be decomposed into three parts using the identity of Knight[7],

��(u − v) − ��(u) = −v�� +
∫ v

0
(I (u� s) − I (u�0)) ds

where��(u) = � − I (u < 0) denotes the quantile influence function. We will write,

Vmn(�) = V (1)
mn (�) + V (2)

mn (�) + V (3)
mn (�),

wherevijk = z�
ij�0 + x�

ij �k/
√
n and,

V (1)
mn (�) = −m−1/2

∑
k

∑
j

∑
i

wk��k (yij − �ij (�k))vijk

V (2)
mn (�) = −m−1/2

∑
k

∑
j

∑
i

wk

∫ vijk

0
(I (yij � �ij (�k) + t/

√
m) − I (yij � �ij (�k))) dt

V (3)
mn (�) = �m

∑
i

|�i − �0i/
√
m| − |�i |.

The first term is asymptotically Gaussian. Let�k = diag(��k (yij − �ij (�k))) and note
that�kemne

�
mn�l = (�k∧�l−�k�l )Imn. ConditionsA2 andA3 imply a Lindeberg condition
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and we have,

V (1)
mn (�) = −m−1/2

∑
k

wk(Z
��k�0 + X��k�k)

� −B�.

The second term is asymptotically quadratic in�. Note that

EV (2)
mn (�)

= m−1
∑
k

∑
j

∑
i

wk

∫ vijk

0

√
m(Fij (�ij (�k) + t/

√
m) − Fij (�ij (�k))) dt

= m−1
∑
k

∑
j

∑
i

wk

∫ vijk

0
fij (�ij (�k))t dt + o(1)

= 1

2m

∑
k

∑
j

∑
i

wkfij (�ij (�k))(z
�
ij�0 + x�

ij �k/
√
n)2 + o(1)

= 1

2m

∑
k

wk(�
�
0 Z�
kZ�0 + 2��

0 Z�
kX�k/
√
n + ��

k X
�
kX�k/n) + o(1)

→ 1

2
��D1�.

The variance ofV (2)
mn (�) converges to zero by Condition A3. Finally,

V (3)
mn (�) = �m√

m

n∑
i=1

�0isgn(�i ) → �0�
�
0 s.

Convexity of the objective function,Vmn, and the uniqueness of the minimum ofV0 yields
uniformity in � completing the argument as above.�

4. Monte Carlo

In this section a very brief glimpse into the finite sample behavior of the penalized
quantile regression estimator is offered. I begin by contrasting the shrinkage effect of�1
and�2 penalty methods. Consider a simple example withn = 50 andm = 5 and response
generated by the model,

yij = �i + uij

with �i ’s iid from the�2
3 distribution, anduit iid also from�2

3. In the left panel of Fig.1 we
illustrate the estimated,̂�i ’s as a function of the regularization parameter�. Here we have
used the estimator (2.3) with weightsw = (0.25,0.50,0.25) on the three quartiles. The
xij ’s were generated as Gaussian according to (4.3) below. In the right panel we illustrate
the corresponding shrinkage effects for the�2 Gaussian penalty method. The�1 shrinkage
method is more tolerant of large discrepancies; note that the gradient condition involves
only the signs of the estimated effects, not their magnitudes, so highly unusual�i ’s can
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Fig. 1. Shrinkage of the fixed effect parameter estimates,�̂i . The left panel illustrates an example of the�1 shrinkage
effect. The right panel illustrates an example of the�2 shrinkage effect.

Table 1
Location-shift model

LS PLS LSFE QR PQR QRFE

N
Bias 0.0031 0.0048 0.0056 0.0048 0.0067 0.0047
RMSE 0.0847 0.0604 0.0668 0.0977 0.0781 0.0815

t3
Bias −0.0062 −0.0054 −0.0051 −0.0063 −0.0101 −0.0082
RMSE 0.1377 0.1031 0.1143 0.1274 0.0881 0.0921

�2
3
Bias −0.0068 0.0002 0.0032 −0.0052 0.0063 0.0072
RMSE 0.2155 0.1503 0.1650 0.2362 0.1506 0.1513

be substantially shrunken toward zero without the extreme prejudice implied by the�2
criterion.

Two simple versions of our basic model are considered in the simulation experiments. In
the first, reported in Table1, the scalar covariate,xij , exerts a pure location shift effect. In
the second, reported in Table2, xij has a both a location and scale shift effect. In the former
case the response,yij , is generated by the model,

yij = �i + xij� + uij (4.1)

while in the latter case,

yij = �i + xij� + (1 + xij�)uij . (4.2)

Without loss of generality we will take� = 0. Interest will focus on the effect of the
covariate,xij , at the median. Sample sizes are fixed, withn = 50, andm = 5 for both
versions of the model. In the first version of the model the covariate effect is clearly zero, in
the second version of the model it depends on the choice of the quantile of interest and the
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Table 2
Location-scale-shift model

LS PLS LSFE QR PQR QRFE

N
Bias 0.0000 0.0010 0.0012 −0.0020 −0.0021 −0.0022
RMSE 0.0559 0.0501 0.0542 0.0638 0.0526 0.0556

t3
Bias −0.0045 0.0000 0.0008 −0.0044 −0.0015 0.0021
RMSE 0.0948 0.0806 0.0870 0.0758 0.0620 0.0693

�2
3
Bias 0.0617 0.0609 0.0608 0.0317 −0.0055 −0.0128
RMSE 0.1608 0.1292 0.1368 0.1627 0.1042 0.1092

form of the error distribution. In all cases the reported entries are based on 400 replications
of the simulations.

A critical aspect governing the performance of penalty methods in these settings is the
“between” versus “within” variability of the covariate. A convenient way to summarize this
is the interclass correlation coefficient. If we generatexij ’s as

xij = �i + vij (4.3)

with �i andvij independent and identically distributed overi andi, j , respectively, then the
interclass correlation coefficient,

�x = �2
�/(�

2
� + �2

u)

see e.g. Scheffé[20, p. 223]is just the ordinary correlation coefficient between any twoxij
andxik observations withj �= k. We take�x = 0.5 in our simulations.

We consider three variants of model 1. In all three variants thexij ’s are generated from
(4.3) with both�i ’s andvij ’s as Gaussian with unit variance. The responsey is then generated
from (4.1). In the first variant both the�i ’s anduij ’s are standard Gaussian, in the second
variant both are Studentt on three degrees of freedom, and in the third variant both are central
�2

3. The interclass correlation coefficient of the response is 0.50 for all three variants.
Six estimators are considered: three from the least squares family, three from the quantile

regression family. The ordinary least squares estimator (LS) simply ignores the�i effects
entirely, maximally shrinking all of these estimates to zero. The penalized least squares esti-
mator (PLS) is the classical random effects estimator for the model (2.1) using the (known)
optimal variance ratio. The least squares fixed effects, or “within” estimator (LSFE) simply
implements the unpenalized least squares estimator of the model (2.1). Correspondingly, the
ordinary quantile regression estimator (QR) fully shrinks the�̂i ’s to zero, the fixed effects
estimator (QRFE) shrinks them not at all, and the penalized quantile regression estimator
(PQR) shrinks them with� chosen to be the ratio of scale parameters�u/��. The quantile
regression estimators minimize the objective function (2.4) with weights(0.25,0.5,0.25)
associated with the three quartiles. In the subsequent tables, however, we focus exclusively
on the performance of the median slope estimate, as a way to compare with the least squares
estimation of the slope of the conditional mean relationship. Bias is computed in each case
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with respect to the true slope parameter, which in all but one case is zero. The exceptional
case is described in more detail below.

Table1 reports the results of the location shift simulations. Bias is small in all cases. In the
Gaussian setting we see roughly the anticipated efficiency loss due to estimating the median
rather than the mean. The gain from penalization, while not overwhelming, is certainly
worthwhile. In thet3 setting the penalized quantile regression estimators do considerably
better than their least squares competitors. In the�2

3 case the penalized quantile regression
estimator does only slightly better than the unpenalized fixed effects procedure, but both
are competitive with the penalized least squares results.

In the location-scale version of the model we adopt the same three distributions for
generating the�i ’s and theuij ’s. In the location-scale model it is important that the resulting
linear quantile functions do not cross, an eventuality we avoid by now taking thexij ’s as�2

3
instead of Gaussian, thus ensuring that the scale parameter will be positive. In the Gaussian
and t3 cases, since we are focusing on the estimation of the median effect, by symmetry
the effect of the covariatexij on median response is still zero. However, in the�2

3 case the
median effect is,

�(1/2) = � + �Qu(1/2),

which in our case with� = 0 and� = 1/10, is 0.236.
In Table2 we report the results of the location-scale model simulations. Again, we see

that the quantile regression estimators perform quite well in thet3 case, but they now are also
quite competitive even in the Gaussian case, a finding that may be attributed to the effect
of the heteroscedasticity in this formulation of the model. It is also apparent that imposing
more aggressive shrinkage is helpful in these cases. The comparison of performance in
the�2

3 case is somewhat difficult, since the procedures are inherently estimating different
functions. The quantile regression methods are all intended to estimate the conditional
median function and do reasonably well in the sense that the bias is still very modest. The
least squares estimators are targeting the conditional mean function, which is now nonlinear
in xij , so we have evaluated both bias and root mean square error as if the least squares
methods were also estimating the conditional median function. This obviously puts the least
squares methods at some disadvantage.

5. Extensions

Many issues remain to be investigated. As in most problems of regularization there are
serious issues about the choice of the regularization parameter,�; only a prima facie case
has been made thatsomedegree regularization is desirable, deciding precisely how much
shinkage poses challenging new questions. There are many variants of the model that would
extend the oneway layout structure for the fixed effects. These include the incorporation of
ordinal factors and nonparametric smoothing components. The analysis of the performance
of the methods for fixedmi sample sizes is also a critical direction for future research.
Applications to reference growth curves would appear to be a natural laboratory for further
development of quantile regression models for longitudinal data.
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