期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:98
Density testing in a contaminated sample
Article
Holzmann, Hajo ; Bissantz, Nicolai ; Munk, Axel
关键词: asymptotic normality;    deconvolution;    goodness of fit;    integrated square error;    multivariate nonparametric density estimation;   
DOI  :  10.1016/j.jmva.2005.09.010
来源: Elsevier
PDF
【 摘 要 】

We study non-parametric tests for checking parametric hypotheses about a multivariate density f of independent identically distributed random vectors Z(1), Z(2),... which are observed under additional noise with density. The tests we propose are an extension of the test due to Bickel and Rosenblatt [On some global measures of the deviations of density function estimates, Ann. Statist. 1 (1973) 1071-1095] and are based on a comparison of a nonparametric deconvolution estimator and the smoothed version of a parametric fit of the density f of the variables of interest Z(i). In an example the loss of efficiency is highlighted when the test is based on the convolved (but observable) density g = f * psi instead on the initial density of interest f. (C) 2005 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2005_09_010.pdf 259KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:2次