
Journal of Multivariate Analysis 98 (2007) 57–75
www.elsevier.com/locate/jmva
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Abstract

We study non-parametric tests for checking parametric hypotheses about a multivariate density f of inde-
pendent identically distributed random vectors Z1, Z2, . . . which are observed under additional noise with
density �. The tests we propose are an extension of the test due to Bickel and Rosenblatt [On some global
measures of the deviations of density function estimates, Ann. Statist. 1 (1973) 1071–1095] and are based
on a comparison of a nonparametric deconvolution estimator and the smoothed version of a parametric fit
of the density f of the variables of interest Zi . In an example the loss of efficiency is highlighted when the
test is based on the convolved (but observable) density g = f ∗ � instead on the initial density of interest f.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The goodness of fit problem for testing whether i.i.d. random vectors Z1, . . . , Zn with values
in Rp, p�1, are distributed according to a density f (or some parametric family) has been well-
studied in the literature, and a variety of methods have been suggested. In particular, Bickel
and Rosenblatt [1] proposed a test based on the L2-distance between a non-parametric kernel
density estimator and a smoothed version of a parametric fit. Their method was extended by Fan
and Ullah [11] and Neumann and Paparoditis [19] to testing parametric hypotheses about the
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marginal distribution of a stationary process. Similar in spirit is the work of Härdle and Mammen
[17] and Paparoditis [21] for the regression function and for the spectral density, respectively.

In this paper we consider the case when the Zi can only be observed with an additional noise
term, i.e. instead of Zi one observes Xi , where

Xi = Zi + �i ,

and the �i are i.i.d. with known density � and independent of the Zi . Hence the Xi have density

g = f ∗ �, (1)

where f ∗ � denotes the convolution of f and �. Recovering f from observations X1, . . . , Xn is
called the deconvolution problem and has been treated extensively in the statistics literature (see
e.g. [8–10,25]). It is well known that the minimax rate of convergence of estimators of f depends
sensitively on the tail behaviour of the characteristic function �� of the errors �i (cf. [9]). Suppose

that ��(t) �= 0 for all t ∈ Rp. If |��(t)| is of polynomial order |t |−� for some � > 0 as |t | → ∞,

we speak of the ordinary smooth case, and if |��(t)| is of exponential order |t |�0e−|t |�/�, �, � > 0,
of the super smooth case. Here both the Euclidean norm on Rp and the absolute value on R are
denoted by | · |. Important examples for the ordinary smooth case are exponential, Laplace and
Gamma deconvolution, and for the super smooth case normal and Cauchy deconvolution. A class
of examples for ordinary smooth multivariate distributions is given in [14]. There are also cases
of interest in which ��(t) = 0 for some t, e.g. if the �i are uniformly distributed (cf. [15]), and if
the density � is a band-limited function (cf. [18]). For dealing with the deconvolution problem in
the context of general statistical inverse problems see van Rooij et al. [28].

In this paper we are concerned with the problem of testing the goodness of fit of f to a parametric
model M = {f (·, �)}�∈�, where � ⊆ Rk. There are two possible approaches to this problem. For
the first, observe that parametric assumptions on the original density f can be expressed uniquely
in terms of parametric assumptions on g. This is due to the fact that convolution with � is injective
since by assumption, ��(t) �= 0 for all t. Since we observe data distributed according to g, in
principle all direct testing procedures (e.g. the test suggested in [1], or classical tests based on
the cumulative distribution function G of g such as the Kolmogorov–Smirnov or the Cramer–
von-Mises tests) could be applied to test such equivalent parametric assumptions on g as well.
However, it turns out that this procedure is not appropriate, in general, for certain alternatives
given in terms of f. The reason is that the deconvolution problem is ill-posed, i.e. the inverse of the
convolution operator is unbounded. Thus it can happen that the true f0 is at an arbitrarily large
L2-distance to the parametric model in the domain of f, whereas, the corresponding g0 = f0 ∗ �
is very close to the parametric model in the domain of g. Hence direct application of tests to the
(observable) data X1, . . . , Xn will result in an inefficient procedure for those alternatives which
can hardly be distinguished from the null in terms of g. Therefore, we suggest to take a different
approach by constructing tests which are based on an inverse estimator f̂ of f and hence deal
directly with the original density f. To our knowledge this has never been treated so far in the
literature.

More specifically, in this paper we develop a version of the Bickel–Rosenblatt (BR) test, based
on a kernel deconvolution estimator of f (cf. [9]), for testing parametric assumptions on the density
f in an ordinary smooth deconvolution problem. In Section 2 we introduce the test statistic and
determine its asymptotic behaviour for a simple hypothesis f0 = f . In Section 3 we discuss
advantages of this test as compared to the direct testing procedures as mentioned above. To this
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end we study the behaviour of the test statistics under local alternatives as well as under fixed
alternatives. In a particular example it is shown that non-linear local alternatives, which converge
to f0 at a slower rate than 1/

√
n, cannot be detected by the direct BR test, since in the domain of

g they converge arbitrarily fast to g0. Furthermore, it turns out that a
√

n rate (cf. [5]) under fixed
alternatives is only valid under additional smoothness assumptions on f. In this case we are able to
prove a limit theorem with a

√
n rate. Our approach allows e.g. to construct confidence intervals

for ‖f − f0‖, which is not possible by any direct method dealing with the density g. In addition,
our findings concerning the superior power of our indirect testing procedure are supported by
a small simulation experiment. Finally, in Section 4 we consider the case of testing a compos-
ite hypothesis, and discuss the related problem of testing assumptions on the derivatives of a
density.

Technically, our work is related to [22] where asymptotic normality for the weighted integrated
squared error of a kernel deconvolution density estimator is proved. However, this result does not
apply to the unweighted L2-distance as required for our purposes. Furthermore, their result only
applies in the one-dimensional case. Consequently, our proofs are completely different and rely
on Fourier methods together with a result of Hall [16].

In order to keep the paper more readable all proofs are deferred to an appendix.

2. The Bickel–Rosenblatt test in deconvolution models

In this section we describe the asymptotic behaviour of the BR test in an ordinary smooth
deconvolution problem for a simple hypothesis. To fix the notation, the Fourier transform of f is
given by

F(f )(t) = �f (t) =
∫

Rp
f (x)eit·x dx,

where t ·x denotes the inner product on Rp. Under the assumptions that ��(t) �= 0 for all t ∈ Rp

and that the Fourier transform �K of the kernel K has compact support, the kernel deconvolution
density estimator

f̂n(x) = 1

(2�)p

∫
Rp

e−it ·x�K(ht)
�̂n(t)

��(t)
dt (2)

is well-defined. Here h > 0 is a smoothing parameter called bandwidth and �̂n(t) = 1/n
∑

eit·Xk

is the empirical characteristic function of X1, . . . , Xn. Local properties of this estimator were
studied by Fan [9,10] and van Es and Uh [27], mean integrated squared error (MISE) properties
by Diggle and Hall [8] and Zhang [29], and rates of convergence of quadratic functionals of
f̂n were investigated by Delaigle and Gijbels [2]. Practical suggestions of how to choose the
bandwidth in order to minimize the MISE are given in Delaigle and Gijbels [3]. Here we use
the kernel deconvolution density estimator in (2) to construct a deconvolution version of the
Bickel–Rosenblatt test.

Suppose first that we want to test the simple hypothesis f = f0. Then the BR test statistic is

Tn =
∫

Rp

(
f̂n − Kh ∗ f0

)2
(x) dx, (3)
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where Kh(x) = K(x/h)/hp. We study this statistic for the ordinary smooth case. Thus we impose
the following assumptions:

Assumption A. The characteristic function �� of the error variable � satisfies ��(t) �= 0 ∀t ∈
Rp, and |��(t)| ≈ |t |−� for a ��0 (i.e. there are c, C > 0 such that c|t |−� � |��(t)|�C|t |−�

for sufficiently large |t |).

Examples for univariate and multivariate densities satisfying Assumption A are given in
Example 1. We will also need the following smoothness assumption on the density f.

Assumption B. The Fourier transform �f of the density f satisfies |�f (t)| = O(|t |−r ) for some
r > p as |t | → ∞.

Finally, we need the following regularity assumption for the Fourier transform of the
kernel K.

Assumption C. The Fourier transform �K of K is symmetric (�K(t) = �K(−t)) and compactly
supported, where we assume w.l.o.g. that the support is contained in [−1, 1]p, and |�K(t)|�1.

Our first result concerns the asymptotic distribution of Tn under the null hypothesis H0 :
f = f0.

Theorem 1. Suppose that Assumptions A, B and C are satisfied, and that the hypothesis H0 :
f = f0 holds. If h → 0 and nhp → ∞, then

n/C
1/2
V,h

(
Tn − CM,h/

(
(2�)pn

)) L→ N
(
0, 2/(2�)2p

)
, (4)

where

CM,h =
∫

Rp
|�K(ht)|2/|��(t)|2 dt, CM,h ≈ h−(2�+p),

and

CV,h =
∫

Rp

∫
Rp

∣∣�K(th)
∣∣2∣∣�K(sh)

∣∣2
|��(t)|2|��(s)|2 |�g(t + s)|2 ds dt, CV,h ≈ h−(4�+p).

A related result on the asymptotic distribution of the integrated squared error for a deconvolution
density estimator is given by Piterbarg and Penskaya [22]. However, their result only applies in
the one-dimensional case and if in addition an integrable weight function is used in (3). Further,
their proof follows the rather sophisticated strong approximation arguments in [1]. In contrast,
our proof is based on a simple limit theorem for U-statistics with variable kernels due to Hall
[16]. However, since our arguments rely heavily on Fourier transformation methods, they only
apply (at least not without strong modifications) to the case where no weight function is used in
(3). Therefore our results are in the one-dimensional case complementary to those in [22].

Example 1. A class of characteristic functions satisfying Assumption A in any dimension is
given by

��(t) = 1/(1 + c|t |�)�, t ∈ Rp, (5)
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where c > 0, 0 < ��2, ��0 (cf. [14], where such functions occur as correlation functions of
stationary Gaussian processes). Notice that this class consists of radial functions. For the density
corresponding to (5), in general there is no closed form expression available. In the univariate
case, for � = 2, 2� = c + 1, it is McKay’s Bessel function density (cf. [13]),

�(x) = 	1/2

�1/2�((	 + 1)/2)

(
	1/2|x|

2

)	/2

K	/2(	
1/2|x|),

where 	 = 1/c and K is the modified Bessel function.
Now, suppose that there exist C�, 
 > 0 such that∣∣C�|t |2�|��(t)|2 − 1

∣∣ = O
(|t |−(p/2+
)

)
. (6)

Then under the assumptions of Theorem 1 we get explicit formulas for the asymptotic expectation
and variance, namely

nh2�+p/2
(

Tn − C�CM,K

(2�)p nh2�+p

)
L→ N

(
0,

C2
�CV,K‖g‖2

2p−1�

)
, (7)

where ‖g‖ denotes the L2 norm of g, and

CM,K =
∫

Rp
|t |2�|�K(t)|2 dt, CV,K =

∫
Rp

|t |4�|�K(t)|4 dt. (8)

Condition (6), for example, is satisfied by the univariate exponential distribution and the Laplace
distribution (for both C� = 1). More generally, the characteristic function of form (5) satisfies
(6) if ��1 and 2� > p. In this case � = �� and C� = c2�.

The asymptotic result (7) now allows to construct an asymptotic level-� test for the simple
hypothesis H0 : f = f0 as follows. Reject H0 if

Tn >
C�C

1/2
V,K ‖g0‖ q1−�

nh2�+p/2 (2p−1�)1/2
+ C�CM,K

(2�)p nh2�+p
,

where q1−� is the (1 − �)-quantile of the normal distribution and g0 = f0 ∗ �. Note that the
constants C�, CM,K and CV,K are explicitly available.

3. Comparison with direct testing

In this section we compare the indirect testing procedure based on the density f of the variables
of interest with the BR test based on the density g of the observations.

3.1. Alternative testing procedures

Observe that under the assumption ��(t) �= 0 for all t ∈ Rp, the convolution operator Conv�
given in (1) is injective. Therefore any hypothesis

H0 : f = f0,

formulated in terms of the density f of the Zi can be equivalently expressed as

H ′
0 : g = g0, g0 = f0 ∗ �, g ∈ Im(Conv�).
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Since under the hypothesis H ′
0 we have observations X1, . . . , Xn distributed according to g0,

in principle the hypothesis H ′
0 could be tested as well by any direct testing procedure. In order

to illustrate the lack of efficiency of this procedure we will restrict ourselves to the classical
Bickel–Rosenblatt test statistic without weight function

T BR
n =

∫
Rp

(
ĝn − Lh ∗ g

)2
(x) dx,

where ĝn(x) = 1/n
∑n

k=1 Lh(x − Xk) is a multivariate kernel density estimator with compactly
supported kernel L which satisfies some additional regularity conditions (cf. [16] for details).
Under the null hypothesis H ′

0, one has the limit behaviour

nhp/2
(

T BR
n − 1

nhp

∫
Rp

L2(x) dx

)
L→ N(0, S2

BR),

where the variance S2
BR is given by

S2
BR = 2 ‖g0‖2

∫
Rp

(L ∗ L)2(x) dx.

3.2. Local alternatives

For simplicity, and since the phenomenon depends on the ill-posedness of the deconvolution
problem rather than on multivariate densities, in this section we will restrict the presentation to
the univariate case. Usually one studies local alternatives of the following linear form (cf. [1] or
[4], for the context of regression)

fn(t) = f0(t) + 
nl(t), (9)

where 
n → 0 at a certain rate. This implies that ‖fn − f0‖ is of order 
n, but due to the
assumed linearity we will see that these types of alternatives are not suitable to highlight the
additional difficulty encountered with deconvolution problems. Nevertheless, for the moment,
assume that f0 satisfies Assumption B and that l is bounded and square integrable, and let 
n =
(2CV,h�2)1/4/n1/2, which is of order 1/(h�+1/4n1/2). Define Tn and CV,h in terms of f0. An
inspection of the proof of Theorem 1 shows that if h → 0 and nh4�+1/2 → ∞,

n/(2CV,h�
2)1/2(Tn − CM,h/(2�n)

) Lfn→ N(‖l‖2, 1), (10)

where fn is given in (9), and ‖l‖2 will be called the shift parameter of the test statistic Tn. Thus,
roughly speaking, the BR test based on f can detect alternatives which converge to f0 at any rate
slower than n−1/2. On the other hand, for the classical BR test with local alternatives of the linear
form

gn(x) = g0(x) + 
nl(x), (11)

where 
n = 1/
√

nh1/2 and h = O(n−�) for 0 < � < 1/4, one can show that

nh1/2
(

T BR
n − 1

nh

∫
R

L2(x) dx

) Lgn→ N(‖l‖2, S2
BR). (12)

Thus the test based on T BR
n can also detect linear alternatives of the type (11) which converge to

g0 at any rate slower than n−1/2.
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In the literature it has been observed that while tests based on the cumulative distribution
function are better at detecting linear local alternatives, smoothing based tests such as the BR
test outperform these tests at detecting non-linear alternatives, cf. Rosenblatt [24] or Ghosh and
Huang [12]. Therefore, we will compare our test with the BR test on the basis of certain non-
linear alternatives. First notice that the linear alternatives (9) are mapped under the convolution
operator to alternatives of the form (11), and the rate is preserved (albeit the norm ‖l‖ may change
drastically). However, this does not hold if one considers alternatives fn which converge to some
f0 in a non-linear fashion, as shown in the subsequent Example 2. The reason is that the inverse
of the operator Conv� (defined on a subspace of L2) is unbounded in general, but bounded on
finite-dimensional linear subspaces.

Example 2. Let f0(x) = 1/�(1 + x2) be the Cauchy density and consider the sequence

fn(x) = f0(x) + 
nln(x),

where

ln(x) = 2 cos(anx)

(
sin x

x

)k

,

k�2 and an → ∞. Let us first show that for small 
n and large an, fn is indeed a density. Firstly,
if 
n is small enough, fn > 0. Let � denote the Fourier transform of (sin x/x)k , and notice that
� has compact support. We have

�ln (t) = �(t − an) + �(t + an),

therefore for large an,
∫

ln = �ln (0) = 0. Hence for suitable 
n and an, fn is indeed a density.
Moreover, for large an, ‖�ln‖2 = 2‖�‖2. Thus

‖fn − f0‖2 = 
2
n‖ln‖2 = 
2

n‖�‖2/�,

and fn converges with rate 
n to f0 in L2. Now let � be the Laplace density which has Fourier
transform 1/(1 + x2), and let gn = fn ∗ �. Then

‖gn − g0‖2 = 
2
n‖ln ∗ �‖2 = O(
2

n/a
4
n).

Thus, with a proper choice of an → ∞, gn converges at an arbitrarily fast rate to g0 in L2, and the
shift parameter in (12) will converge to zero. In contrast, one can show that a statement analogous
to (10), even for an → ∞, with non-zero shift parameter is still valid.

In summary, certain non-linear local alternatives can be detected by the indirect test Tn but not by
the direct BR test T BR

n and also not by the classical
√

n-consistent tests such as the Kolmogorov–
Smirnov test, and in this respect our test appears to be more efficient. Let us point out that there
is a wide variety of efficiency concepts for goodness-of-fit tests in the literature, see e.g. [20],
which we will not pursue any further. However, each efficiency concept appears to bear its own
difficulty and challenge in interpretation, therefore, we will support our theoretical findings by a
simulation experiment. This is conducted in Section 3.4 and shows that at least in the scenario
considered there, the indirect test Tn outperforms the BR test as well as classical goodness-of-fit
tests.



64 H. Holzmann et al. / Journal of Multivariate Analysis 98 (2007) 57–75

3.3. Fixed alternatives

Finally we consider the asymptotic behaviour of the test statistics under fixed alternatives. First
consider the classical BR test. Suppose that for the true density g we have that ‖g − g0‖ > 0.
Under the assumptions of Theorem 3 (cf. Section 4.2), we have that

n1/2
(
T BR

n − ‖g − g0‖2
) L→ N(0, �2

BR),

where

�2
BR = Var

(
(g − g0)(X1)

)
,

see also Dette and Bachmann [5] for a related result in the univariate case. This result can be used
to test hypotheses of the form

H ′
0 : ‖g − g0‖ > � against H ′

1 : ‖g − g0‖��, (13)

for some � > 0. For further details on such testing problems in a regression context cf. Dette and
Munk [6]. Observe that the variance of T BR

n under fixed alternatives is of order n−1. Surprisingly,
in the indirect case this is no longer true, the variance of Tn under a fixed alternative may be larger
than n−1 in general. For the following considerations it will be convenient to use the following
stronger assumption on the kernel K, which allows a simple estimation of relevant bias terms.

Assumption C∗ (Flat top kernel). The Fourier transform �K of K is symmetric with support in
[−1, 1]p, |�K(t)|�1, and �K(t) = 1 for t ∈ [−
, 
]p for some 
 > 0.

Flat top kernels were previously used in multivariate direct density estimation by Politis and
Romano [23]. For a fixed density f let r0 denote the maximal r such that Assumption B is satisfied
for both �f and �f0 (r0 = ∞ if Assumption B is satisfied for all r). The next proposition gives
upper bounds for the variance of Tn under fixed alternatives. It turns out, that these bounds depend
on the index r0, i.e. on the tail behaviour of �f and �f0 .

Proposition 1. Suppose that Assumptions A, B and C∗ hold and let r0 be as above. Under the
alternative f �= f0, if h → 0 and nh2�+p → ∞,

ETn = ‖f − f0‖2 + O
(
h2r0−p

)+ O
(
1/(nh2�+p)

)
(14)

and if nh4 min(r0,�) → 0,

Var Tn =

⎧⎪⎪⎨
⎪⎪⎩

O
(
1/(nh2(�−r0)+p

) : ��r0,

O
(
1/(nhp−2(r0−�)

) : p/2 > r0 − � > 0,

O
(

log(1/h)/n
) : p/2 = r0 − �,

O
(
1/n

) : p/2 < r0 − �.

(15)

In general, it appears to be difficult to determine the exact order of the variance of Tn under
fixed alternatives, and hence to derive a corresponding limit law. However, if the densities are
assumed to be sufficiently smooth, this is still possible, as shown in the following theorem.
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Theorem 2. Suppose that f �= f0, that Assumption C∗ holds and that both f and f0 satisfy
Assumption B for some r > � + p. If h → 0 is such that nh4�+2p → ∞ and nh4r−2p → 0, then

n1/2(Tn − ‖f − f0‖2) L→ N(0, �2), (16)

where

�2 = Var

(
F−1

(
�f − �f0

��

)
(X1)

)
. (17)

Under the additional smoothness assumption in Theorem 2 we are in the position to test the
hypothesis

H0 : ‖f − f0‖ > � against H1 : ‖f − f0‖��, (18)

formulated in terms of f. In addition, confidence intervals for ‖f − f0‖2 can be derived from
(16) as well. Notice that (18) and (13) are not equivalent, since the inverse of the convolution
operator Conv� is unbounded, thus (18) could not be tested by a direct testing procedure. Hence,
hypotheses of the type (18) and (13) nicely express the additional difficulty due to the ill-posed
character of the problem, which is not captured by the classical hypothesis H0 : f = f0. However,
it might not be easy to apply Theorem 2 in practice, since the rather complicated expression (17)
for the variance has to be estimated, and bootstrapping Tn may become necessary.

3.4. Simulation study

In this section we present the results of a small simulation study of our testing procedure. To this
end we generate data from a centered normal density f0 with variance 
2 = 0.3, contaminated
with an additional noise term ε with characteristic function

��(t) = 1

(1 + t2)2 .

A density � with this characteristic function is obtained by convolution of a Laplace density with
parameter 1 with itself, and satisfies Assumption A for � = 4. The sample size in the subsequent
simulations is n = 500, the sinc kernel K(x) = sin x/(�x) is used, and the bandwidth is chosen
to maximize the power of the test for the null hypothesis H0 : f = f0.

Fig. 1 shows the empirical density of the test statistic Tn under the null hypothesis. Note, that
the actual distribution is left skewed and still for 500 samples poorly approximated by the normal
limit law in Theorem 1, whereas the moments match rather well. This phenomenon is well known
for quadratic statistics such as Tn and occurs in various situations (cf. [17,4]). Improvement can
be achieved by matching a scaled, non-central �2-distribution with estimated number of freedoms
(cf. [7]) or by bootstrap variants of the test (cf. [17]). The estimated mean and variance of Tn are
3.4 × 10−3 and 8.4 × 10−6, respectively, whereas the asymptotic values of Eq. (4) in Theorem 1
are 3.3 × 10−3 and 8.3 × 10−6, respectively.

In a second part we simulate the power of the test for the null hypothesis H0 : f = f0 under
the same assumptions as used so far. We use the quantiles from the empirical distributions of Tn
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Fig. 1. Empirical densities of Tn and T BR
n from 500 simulations under the null hypothesis f = f0 (indirect test, left

panel), respectively g = g0, where g0 := f0 ∗ � (BR test, right panel).

Table 1
Simulated power from 500 replications of the BR test and the indirect testing procedure. For both tests the bandwidth is
selected such that the power is maximized. Its values are h = 0.89 and 0.95 for the BR test and the indirect test, respectively.
Moreover, we simulate the Kolmogorov–Smirnov (KS) test for the same hypothesis g = g0, with g1 := f1 ∗ �

Level BR test Indirect test KS test

0.05 0.49 0.52 0.31
0.10 0.56 0.72 0.50
0.20 0.73 0.86 0.71

to determine the critical values for Tn, and as alternative we consider the mixture density

f1 = 0.7 · f0 + 0.3 · �.

In Table 1 we compare the power of our indirect testing procedure with the power of the BR
test based on the density g of the observations, where the sample size is again n = 500, and the
bandwidth has been selected such that the power of the (direct) BR test is maximized. Note that,
because we use critical values from the empirical distributions of Tn and T BR

n , respectively, both
our indirect and the BR test maintain the desired level.

The results from the power simulations show that the indirect testing procedure outperforms
the direct BR test as well as the Kolmogorov–Smirnov test by some amount. For other settings
we found a similar behaviour, the inverse BR test outperforms the BR test as well as the KS test in
most cases slightly. The magnitude of the difference in power depends on the behaviour of �� and
�f near the frequency cutoff given by the support of �K(h·). Usage of the inverse test implies
that we first aim to recover the characteristic function of f. In general, in the spectral window
defined by the support of �K(h·), �� attains its smallest absolute values near the boundaries.
Therefore, the inverse test will outperform the BR test most if �f0 and �f1 mainly differ in high
frequencies which are still in the support of �K(h·).



H. Holzmann et al. / Journal of Multivariate Analysis 98 (2007) 57–75 67

4. Further extensions and modifications

4.1. Composite hypotheses

More important from a practical point of view than testing a simple hypothesis H0 : f = f0 is
to test whether f belongs to some finite-dimensional parametric family, i.e.

H0 : f ∈ M.

Here we compare the non-parametric fit to a smoothed version of the parametric fit, i.e. we
consider

T
n,�̂ =

∫
Rp

(
f̂n(x) − Kh ∗ f�̂

)2
(x) dx,

where �̂ is a consistent parametric estimate to be specified later. As in Neumann and Paparoditis
[19], we derive the limit distribution of T

n,�̂ by estimating the difference between Tn and T
n,�̂.

Denote the Fourier transform of f� by �� and the true parameter by �0. We have, using Parseval’s
formula,

2�
(
T

n,�̂ − Tn

)= 2
∫

Rp
�K(ht)

(
�̂n(t)

��(t)
− ��0(t)

)
�K(ht)

(
��0(t) − ��̂(t)

)
dt

+
∫

Rp

∣∣�K(ht)
∣∣2∣∣��0(t) − ��̂(t)

∣∣2 dt. (19)

Write

��̂(t) − ��0(t) = (�̂ − �0)�
′
�0

(t) + R(�̂, �0, t),

where �′
�0

= ∇�0��0 is the gradient of �� w.r.t. � at �0.

We will need the following assumptions.

Assumption D.

1. (�̂ − �0) = oP

(
n−1/2h−�),

2. supt∈R |��
′(t)| < ∞, � ∈ �,

3.
∫

Rp R2(�̂, �0, t) dt = oP (n−1),

4.
∫

Rp

∣∣��0(t) − ��̂(t)
)∣∣2 dt = oP

(
n−1h−2(�+p/2)

)
.

Under Assumptions A–D, one shows similarly as in Neumann and Pararoditis [19], using (19)
and an estimate for the order of the variance Var Tn similar to (15) that

T
n,�̂ − Tn = oP

(
n−1h−2�−p/2).

Therefore the assertion of Theorem 1 remains unchanged for T
n,�̂, provided Assumption D holds.

4.2. Testing the derivative of a density

It has been observed in the literature (cf. van Es and Kok [26]) that estimates of the derivative
of a density behave similarly as estimates in an ordinary smooth deconvolution problem. In this
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section let p = 1 and consider the kernel estimator of the kth derivative (k�0) of g,

ĝ(k)
n (x) = 1

nhk+1

n∑
j=1

K(k)
(
(x − Xj)/h

)

= 1

2�

∫
R

e−itx �K(th) (−it)k �̂n(t) dt, (20)

where we assume that X1, . . . , Xn are i.i.d. with density g and that K satisfies Assumption C.
Recall that the Fourier transform �K of K has compact support, therefore K ∈ C∞. Notice that
taking the kth derivative is an injective operation on the k-times differentiable densities on the real
line. The BR test statistic is in this case given by

Tn =
∫

R

(
ĝ(k)

n (x) − g
(k)
n,0(x)

)2
dx,

where g
(k)
n,0 is as in (20) but replacing the empirical characteristic function by the characteristic

function �g0 . The proof of the following theorem is similar (in fact simpler) to the proofs of
Theorems 1 and 2 and therefore omitted.

Theorem 3. Under the hypothesis g = g0, if g satisfies Assumption B with some r > k + 1 and
h → 0, nh → ∞, then

nh2k+1/2
(

Tn − CM,K

2�nh2k+1

)
L→ N

(
0,

CV,K‖g‖2

�

)
,

where CM,K and CV,K are given in (8) for � = k and p = 1. Under a fixed alternative g �= g0,
if Assumption C∗ holds and if both g and g0 satisfy Assumption B for some r > k + 1 and if
nh4k+2 → ∞ and nh4r−2 → 0, then

√
n
(
Tn − ‖g(k) − g

(k)
0 ‖2) L→ N(0, �2

D),

where

�2
D = Var

(
F−1(sk(�g(s) − �g0(s))

)
(X1)

)
.

Remark 1. It is possible to combine estimators (2) and (20) in order to estimate the derivative
of a density of a random variable which is observed under noise (cf. [9,2]). In the univariate case
it would then be possible to combine Theorems 1 and 3.
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Appendix

Proof of Theorem 1. Note that �
f̂n

(t)=�K(th)
�̂n(t)
��(t)

and let �n(t)=E�
f̂n

(t)=�K(th)�f (t),

�n,0(t)=�K(th)�f0(t). From Parseval’s equation,

(2�)p Tn =
∫

Rp

∣∣�
f̂n

(t) − �n,0(t)
∣∣2 dt

=
∫

Rp

∣∣�n,0(t) − �n(t)
∣∣2 dt +

∫
R

∣∣�
f̂n

(t) − �n(t)
∣∣2 dt

+2

(∫

Rp

(
�

f̂n
(t) − �n(t)

)(
�n(t) − �n,0(t)

)
dt

)

=
∫

Rp

∣∣�K(th)
∣∣2∣∣�f0 − �f

∣∣2(t) dt

+n−2
n∑

j=1

∫
Rp

∣∣�K(th)
∣∣2

|��(t)|2
∣∣eit ·Xj − �g(t)

∣∣2 dt

+ 2n−2
∑

1� j<k �n



(∫

Rp

∣∣�K(th)
∣∣2

|��(t)|2
(
eit ·Xj − �g(t)

)(
eit ·Xk − �g(t)

)
dt

)

+ 2n−1
n∑

k=1



(∫

Rp

∣∣�K(th)
∣∣2(eit ·Xk/��(t)−�f (t)

)(
�f (t)−�f0(t)

)
dt

)
= CN,h + TA + TB + TC. (21)

Observe that all integrals in (21) are in fact real-valued, so that we can skip the 
() in the following.
For example, for the last term,∫

Rp

∣∣�K(th)
∣∣2(eit ·Xk/��(t) − �f (t)

)(
�f (t) − �f0(t)

)
dt

=
∫

Rp

∣∣�K(−th)
∣∣2(e−it ·Xk/��(−t) − �f (−t)

)(
�f (t) − �f0(t)

)
dt,

since
∣∣�K(th)

∣∣2 is symmetric and since �f (t) = �f (−t) for real-valued f. Substituting s = −t

shows that the term is invariant under complex conjugation and hence is real. The other term is
dealt with similarly.

Now, let us consider the diagonal term TA.

Lemma A.1. Under Assumptions A and B, we have that CM,h ≈ h−(2�+p) and that

TA = CM,h/n + O(1/n) + OP

(
1/(n3/2h2�+p)

)
. (22)

Proof. To compute the order of CM,h, notice that

CM,h ≈
∫

Rp
|�K(ht)|2|t |2� dt = h−(2�+p)

∫
Rp

|�K(u)|2|u|2� du.
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Let us compute the expectation of TA. Since

E|eit ·Xj − �g(t)
∣∣2 = E

(
1 + |�g(t)|2 − eit ·Xj �g(t) − e−it ·Xj �g(t)

)
= 1 − |�g(t)|2 = 1 − |��(t)|2|�f (t)|2,

we get

ETA = CM,h

n
− 1

n

∫
Rp

∣∣�K(th)
∣∣2|�f (t)|2 dt.

From Assumption B, �f ∈ L2, therefore the second term is O(1/n). Moreover,

Var TA = 1/n3 Var

[∫
Rp

∣∣�K(th)
∣∣2

|��(t)|2
∣∣eit ·X1 − �g(t)

∣∣2 dt

]

� 1/n3E

∣∣∣∣
∫

[−1/h,1/h]p
1

|��(t)|2
(
1 + |�g(t)|2

−eit ·X1�g(t) − e−it ·Xj �g(t)
)
dt

∣∣∣∣
2

� 1/n3
(∫

[−1/h,1/h]p
1

|��(t)|2
(
1 + |�g(t)|2 + 2|�g(t)|

)
dt

)2

� 1/n3
(

O(h−(2�+p)) + 2
∫

[−1/h,1/h]p
|�f (t)|
|��(t)| dt

+
∫

[−1/h,1/h]p
|�f (t)|2 dt

)2

� 1/n3O(h−(4�+2p)). �

Next we give the asymptotic variance of TB .

Lemma A.2. Under Assumptions A and B, we have that CV,h ≈ h−(4�+p) and that

ET2
B = 2/n2

[
CV,h + O

(
1/h2 max(�+p−r,0)

)]
. (23)

Proof. Set

Hn(x, y) =
∫

Rp

∣∣�K(th)
∣∣2

|��(t)|2
(
eit ·x − �g(t)

)(
eit ·y − �g(t)

)
dt. (24)

Then

E
(
Hn(X1, X2)

)2 = E

[∫
Rp

∫
Rp

|�K(th)|2
|��(t)|2

|�K(sh)|2
|��(s)|2

(
eit ·X1−�g(t)

)(
eit ·X2−�g(t)

)
×(eis·X1 − �g(s)

)(
eis·X2 − �g(s)

)
ds dt

]
. (25)
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Expanding this expression, we compute the different terms separately. Let us start with the
variance-dominating term

E

(∫
Rp

∫
Rp

∣∣�K(th)
∣∣2

|��(t)|2
∣∣�K(sh)

∣∣2
|��(s)|2 cos

(
t · (X1−X2)

)
cos

(
s · (X1−X2)

)
ds dt

)
.

From addition theorems for the cosine,

E cos
(
t · (X1 − X2)

)
cos

(
s · (X1 − X2)

) = 1/2
(|�g(t + s)|2 + |�g(t − s)|2).

Since �K and |��|2 are symmetric, it follows that

E

(∫
Rp

∣∣�K(th)
∣∣2

|��(t)|2 cos
(
t · (X1 − X2)

)
dt

)2

= CV,h.

Let us compute the order of CV,h. From Assumption A, this order is the same as that of∫
Rp

∫
Rp

|�K(ht)|2|�K(hs)|2|t |2�|s|2�

(1 + (s + t)2)�
|�f (s + t)|2 ds dt

= h−(2p+4�)

∫
Rp

∫
Rp

|�K(x)|2|�K(y)|2|x|2�|y|2�

(1 + ((x + y)/h)2)�
|�f ((x + y)/h)|2 dx dy

= h−(p+4�)

∫
Rp

∫
Rp

|�K(u)|2|�K(hw−u)|2|u|2�|hw−u|2� |�f (w)|2
(1 + w2)�

dw du

∼ h−(p+4�)

∫
Rp

|�K(u)|4|u|4� du

∫
Rp

|�f (w)|2
(1 + w2)�

dw, (26)

where f (h) ∼ g(h) if and only if limh→0 f (h)/g(h) = 1. Now let us consider another term from
the expansion of (25). We have∣∣∣E(eit ·(X1−X2)�g(s)e

−is·X2
)∣∣∣ = |�g(s)||�g(t)||�g(t + s)|� |�g(t)||�g(s)|.

Therefore

E

[∫
Rp

∫
Rp

|�K(ht)|2
|��(t)|2

|�K(hs)|2
|��(s)|2 eit ·(X1−X2)�g(s)e

−is·X2 ds dt

]

= O

⎛
⎝(∫

[−1/h,1/h]p
|�f (t)|
|��(t)| dt

)2
⎞
⎠ = O

(
1/h2 max(�+p−r,0)

)
.

The other terms in (25) are dealt with similarly. Thus

EH 2
n (X1, X2) = CV,h + O

(
1/h2 max(�+p−r,0)

)
, (27)

and the lemma is proved. �

Proof of Theorem 1 continued. Under the hypothesis f = f0 we have TC = CN,h = 0. From
Lemmas A.1 and A.2,

(2�)p Tn = CM,h/n + O(1/n) + OP

(
1/(n3/2h2�+p)

)
+ TB,
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and it suffices to show asymptotic normality of TB . To this end we will apply Theorem 1 in [16],
and thus have to check that

EH4
n(X1, X2

)
n
[
EH2

n(X1, X2)
]2 → 0 and

EG2
n(X1, X2

)
[
EH2

n(X1, X2)
]2 → 0, (28)

where Hn(x, y) is defined in (24) and

Gn(x, y) = E
(
Hn(X1, x)Hn(X1, y)

)
.

Expanding EH4
n(X1, X2

)
, all terms can be estimated separately. We give an example of this

procedure. From addition theorems for the cosine, one shows that

E cos
(
t1 · (X1 − X2)

)
cos

(
t2 · (X1 − X2)

)
cos

(
t3 · (X1 − X2)

)
cos

(
t4 · (X1 − X2)

)
= 1/8

(
|�g(t1 + t2 + t3 + t4)|2 + |�g(t1 − t2 + t3 + t4)|2 + |�g(t1 + t2 − t3 + t4)|2

+|�g(t1 + t2 + t3 − t4)|2 + |�g(t1 − t2 − t3 + t4)|2 + |�g(t1 − t2 + t3 − t4)|2
+|�g(t1 + t2 − t3 − t4)|2 + |�g(t1 − t2 − t3 − t4)|2

)
.

Thus ∫
Rp

· · ·
∫

Rp
E

4∏
i=1

|�K(hti)|2
|��(ti)|2 cos

(
ti · (X1 − X2)

)
dt1 . . . dt4

=
∫

Rp
· · ·
∫

Rp

4∏
i=1

|�K(hti)|2
|��(ti)|2 |��(t1 + t2 + t3 + t4)|2

×|�f (t1 + t2 + t3 + t4)|2 dt1 . . . dt4.

A computation similar to that in (26) shows that this term is O(1/h3p+8�). The other terms are
dealt with similarly, and we get

EH 4
n (X1, X2) = O(1/h3p+8�). (29)

Now let us consider Gn. We have

EG2
n(X3, X4) = E

(
Hn(X1, X3)Hn(X1, X4)Hn(X2, X3)Hn(X2, X4)

)
.

This expression is again expanded and the terms are estimated separately. Consider for example∣∣∣∣∣
∫

Rp
· · ·
∫

Rp
E

4∏
i=1

|�K(hti)|2
|��(ti)|2 cos

(
t1 · (X1 − X3)

)
cos

(
t2 · (X1 − X4)

)

× cos
(
t3 · (X2 − X3)

)
cos

(
t4 · (X2 − X4)

)
dt1 . . . dt4

∣∣∣∣∣
�
∫

Rp
· · ·
∫

Rp

4∏
i=1

|�K(hti)|2
|��(ti)|2 |�g(t1 + t2)||�g(t1 + t3)|

×|�g(t3 + t4)||�g(t2 + t4)| dt1 . . . dt4.
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Computing as in (26) shows that this term is O(1/hp+8�), and we get

EG2
n(X1, X2) = O(1/hp+8�). (30)

From (27), (29) and (30) it follows that (28) holds. �

Proof of Proposition 1. The formula for the expectation follows from (21) and (22) and straight-
forward computations using the properties of �K . From (22) and (23), the variances of TA and
TB are of lower order than those given in (15). Thus it remains to estimate the variance of TC . We
have that

E

∣∣∣∣
∫

Rp
|�K(th)|2(eit ·Xk/��(t) − �f (t)

)(
�f (t) − �f0(t)

)
dt

∣∣∣∣
2

= −
∣∣∣∣
∫

Rp
|�K(th)|2�f (t)

(
�f (t) − �f0(t)

)
dt

∣∣∣∣
2

+
∫

Rp

∫
Rp

�f (t − s)��(t − s)

��(t)��(−s)
|�K(th)|2(�f (t) − �f0(t)

) |�K(sh)|2

×(�f (s) − �f0(s)
)
dt ds. (31)

We consider the case ��r0, the other cases are dealt with similarly. The first term on the right-
hand side of (31) is bounded, therefore it suffices to estimate the second term, which is bounded
by

C

∫
[−1/h,1/h]p

∫
[−1/h,1/h]p

|t |�−r0 |s|�−r0

(1 + |s + t |�+r0)
ds dt

�C h−(p+2(�−r0))

∫
[−1,1]p

∫
[−1/h,1/h]p+u

|u|�−r0 |hw − u|�−r0

1 + |w|�+r0
dw du

∼ C h−(p+2(�−r0))

∫
[−1,1]p

|u|2(�−r0) du

∫
Rp

1

1 + |w|�+r0
dw. �

Proof of Theorem 2. We start by observing that the remainder terms in (14), when multiplied
with

√
n, tend to 0 due to the assumptions of the theorem. The variance-dominating term in

decomposition (21) is again TC . To compute the constant �2 in the variance, we have from the
dominated convergence theorem∫

Rp

∫
Rp

�f (t − s)��(t − s)|�K(sh)|2 �f (s) − �f0(s)

��(−s)
ds |�K(th)|2 �f (t) − �f0(t)

��(t)
dt

→
∫

Rp
(�f ��) ∗

(
�f − �f0

��

)
(t)

�f (t) − �f0(t)

��(t)
dt

= (2�)p
∫

Rp
g(x)

∣∣∣∣∣F−1

(
�f − �f0

��

)
(x)

∣∣∣∣∣
2

dx,

using Parseval’s formula in the last equality. The value of �2 now follows from (31). To obtain
asymptotic normality, we apply the Lyapounov central limit theorem to TC . Indeed, Lyapounov’s
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condition is satisfied since

E

∣∣∣∣
∫

Rp
|�K(th)|2(eitXk /��(t) − �f (t)

)(
�f (t) − �f0(t)

)
dt

∣∣∣∣
4

�
(∫

Rp

(
1/|��(t)| + |�f (t)|)(|�f (t)| + |�f0(t)|

)
dt

)4

< ∞
is bounded. This completes the proof of the theorem. �

References

[1] P.J. Bickel, M. Rosenblatt, On some global measures of the deviations of density function estimates, Ann. Statist. 1
(1973) 1071–1095.

[2] A. Delaigle, I. Gijbels, Estimation of integrated squared density derivatives from a contaminated sample, J. Roy.
Statist. Soc. Ser. B 64 (2002) 869–886.

[3] A. Delaigle, I. Gijbels, Practical bandwidth selection in deconvolution kernel density estimation, Comput. Statist.
Data Anal. 45 (2004) 249–267.

[4] H. Dette, A consistent test for the functional form of a regression based on a difference of variance estimators, Ann.
Statist. 27 (1999) 1012–1040.

[5] H. Dette, D. Bachmann, A note on the Bickel–Rosenblatt test in autoregressive time series, Technical Report, Ruhr-
Universität Bochum, 2004.

[6] H. Dette, A. Munk, Validation of linear regression models, Ann. Statist. 26 (1998) 778–800.
[7] H. Dette, A. Munk, Testing heteroscedasticity in nonparametric regression, J. Roy. Statist. Soc. Ser. B 60 (1998)

693–708.
[8] P. Diggle, P. Hall, A Fourier approach to nonparametric deconvolution of a density estimate, J. Roy. Statist. Soc. Ser.

B 55 (1993) 523–531.
[9] J. Fan, On the optimal rates of convergence for nonparametric deconvolution problems, Ann. Statist. 19 (1991)

1257–1272.
[10] J. Fan, Asymptotic normality for deconvolution kernel density estimators, Sankhya Ser. A 53 (1991) 97–110.
[11] Y. Fan, A. Ullah, On goodness-of-fit tests for weakly dependent processes using kernel method, J. Nonparametr.

Statist. 11 (1999) 337–360.
[12] B.K. Ghosh, W.M. Huang, The power and optimal kernel of the Bickel–Rosenblatt test for goodness of fit, Ann.

Statist. 19 (1991) 999–1009.
[13] T. Gneiting, Normal scale mixtures and dual probability densities, J. Statist. Comput. Simulation 59 (1997)

375–384.
[14] T. Gneiting, M. Schlather, Stochastic models that separate fractal dimension and the Hurst effect, SIAM Rev. 46

(2004) 269–282.
[15] P. Groeneboom, G. Jongbloed, Density estimation in the uniform deconvolution model, Statist. Neerlandica 57 (2003)

136–157.
[16] P. Hall, Central limit theorem for integrated square error of multivariate nonparametric density estimators, J.

Multivariate Anal. 14 (1984) 1–16.
[17] W. Härdle, E. Mammen, Comparing nonparametric versus parametric regression fits, Ann. Statist. 21 (1993)

1926–1947.
[18] I.A. Ibragimov, R.Z. Khas’minskij, Estimation of distribution density belonging to a class of entire functions, Theory

Probab. Appl. 27 (1982) 551–562.
[19] M.H. Neumann, E. Paparoditis, On bootstrapping L2-type statistics in density testing, Statist. Probab. Lett. 50 (2000)

137–147.
[20] Y. Nikitin, Asymptotic Efficiency of Nonparametric Tests, Cambridge University Press, Cambridge, 1995.
[21] E. Paparoditis, Spectral density based goodness of fit tests for time series models, Scand. J. Statist. 27 (2000)

145–176.
[22] V.I. Piterbarg, M.Y. Penskaya, On asymptotic distribution of integrated square error of an estimate of a component

of a convolution, Math. Meth. Statist. 2 (1993) 30–41.
[23] D.N. Politis, J.P. Romano, Multivariate density estimation with general flat-top kernels of infinite order, J. Multivariate

Anal. 68 (1999) 1–25.
[24] M. Rosenblatt, A quadratic measure of deviation of two-dimensional density estimates and a test of independence,

Ann. Statist. 3 (1975) 1–14.



H. Holzmann et al. / Journal of Multivariate Analysis 98 (2007) 57–75 75

[25] L. Stefanski, R.J. Carroll, Deconvoluting kernel density estimators, Statistics 21 (1990) 169–184.
[26] A.J. van Es, A.R. Kok, Simple kernel estimators for certain nonparametric deconvolution problems, Statist. Probab.

Lett. 39 (1998) 151–160.
[27] A.J. van Es, H.-W. Uh, Asymptotic normality for kernel type deconvolution density estimators: crossing the Cauchy

boundary, J. Nonparametr. Statist. 16 (2004) 261–277.
[28] A.C.M. van Rooij, F.H. Ruymgaart, W.R. van Zwet, Asymptotic efficiency of inverse estimators, Theory Probab.

Appl. 44 (1999) 722–737.
[29] C.H. Zhang, Fourier methods for estimating mixing densities and distributions, Ann. Statist. 18 (1990) 806–831.


