期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:162
Inference for eigenvalues and eigenvectors in exponential families of random symmetric matrices
Article
Lee, Han Na1  Schwartzman, Armin2 
[1] North Carolina State Univ, Dept Stat, 2311 Stinson Dr, Raleigh, NC 27695 USA
[2] Univ Calif San Diego, Div Biostat, 9500 Gilman Dr,MC0631, La Jolla, CA 92093 USA
关键词: Diffusion tensor imaging (DTI);    Matrix-variate Gamma distribution;    Statistics on manifolds;    Symmetric positive definite matrices;    Wishart distribution;   
DOI  :  10.1016/j.jmva.2017.08.006
来源: Elsevier
PDF
【 摘 要 】

Diffusion tensor imaging (DTI) data consist of a 3 x 3 positive definite random matrix at every voxel. Motivated by the anatomical interpretation of the data, we define a matrix-variate exponential family of distributions for random positive definite matrices and develop estimation and testing procedures for the eigenstructure of the mean parameter. The exponential family includes the spherical Gaussian and matrix-Gamma distributions as special cases. Maximum likelihood estimation and likelihood ratio testing procedures are carried out both in the one-sample and two-sample problems. In addition to their large-samplebehavior, their non-asymptotic performance is evaluated via simulations. The methods are illustrated in a real DTI data example. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2017_08_006.pdf 631KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次