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Abstract

Diffusion tensor imaging (DTI) data consist of a 3 × 3 positive definite random matrix at every voxel. Motivated
by the anatomical interpretation of the data, we define a matrix-variate exponential family of distributions for
random positive definite matrices and develop estimation and testing procedures for the eigenstructure of the mean
parameter. The exponential family includes the spherical Gaussian and matrix-Gamma distributions as special
cases. Maximum likelihood estimation and likelihood ratio testing procedures are carried out both in the one-
sample and two-sample problems. In addition to their large-sample behavior, their non-asymptotic performance
is evaluated via simulations. The methods are illustrated in a real DTI data example.

Keywords: Diffusion Tensor Imaging (DTI), matrix-variate Gamma distribution, statistics on manifolds,
symmetric positive definite matrices, Wishart distribution.

1. Introduction

There are several situations where inference based on random symmetric matrix data is of interest. In Diffusion
Tensor Imaging (DTI), the random movement of water molecules at each voxel (3D pixel) is captured by a 3 × 3
symmetric positive definite matrix, called “diffusion tensor” [4]. A diffusion tensor can be thought of as the
covariance matrix of a Gaussian distribution, which models the physical Brownian motion of the water molecules
in the voxel. Thus, the set of diffusion tensors from different subjects at a given voxel can be considered as a
random sample from the population corresponding to that voxel. In addition, the eigenvalues of the diffusion
tensor represent information about the type of tissue and its condition, while the eigenvectors provide information
about the spatial orientation of neural fibers [4]. Thus, statistical inference for the eigenstructure of random
symmetric matrices can be useful in the analysis of DTI data [27–29, 33].

In addition to DTI, inference for symmetric positive definite matrices is relevant in the analysis of covariance
matrices or inverse covariance matrices representing networks, such as in brain connectivity [14, 19, 26] and stock
portfolios [11]. In these applications, the number of rows (or columns) of the matrices corresponds to the number
of nodes in the network, which can be in the order of several items to tens or even hundreds.

More generally, consider a p × p random symmetric matrix Y from some probability density function f (·; M),
where M is the mean parameter of this density. Here, Y and M are in the set of p× p symmetric matrices, denoted
by Sp. Our goal is to make inference about the mean parameter M, with some assumptions on the distribution
of the random matrix Y and restrictions on the parameter space, i.e., M lies in a specific subset of Sp. Our work
is focused on estimating and testing the eigenvalues and eigenvectors of M, when we have restrictions on the
eigenstructure of the mean parameter matrix M. In addition, we consider the comparison of two group means,
by estimating and testing the eigenvalues and eigenvectors of each group mean parameter M1 and M2. For the
two-sample case, we are interested in comparing the eigenstructure of the two group means under restrictions
on the eigenvalues and eigenvectors, such as the existence of particular multiplicities in eigenvalues, common
eigenvalues, or common eigenvectors.

The problem of inference for matrix-variate data has been treated before in the multivariate statistics literature,
although not so much from the angle of their eigenstructure. The statistical properties and moments of specific
parametric matrix-variate distributions are provided in several books and papers. For the Wishart distribution, see
[21, 32]; for the matrix-variate Gaussian distribution on rectangular random matrices, the matrix-Gamma distri-
bution, as well as spherical and elliptically contoured distributions, refer to [13]. Our work focuses on making
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inference on random symmetric matrices by suggesting a distribution family that can embrace some commonly
used distributions for symmetric matrix data, such as the spherical Gaussian, Wishart and matrix-Gamma distri-
butions.

There are a few works about inference on the eigenstructure of p × p random symmetric matrices when the
data are assumed to be from a specific distribution. Mallows [20] presented work about linear hypotheses involved
in testing the eigenvectors of a single matrix in the case of a Gaussian distribution with orthogonally invariant co-
variance structure. This reference also provides the concept of orthogonally invariant covariance structure, which
means that the distribution of a random matrix Y is the same as that of QYQ> for any orthogonal matrix Q. In ad-
dition, maximum likelihood estimation (MLE) and a likelihood ratio test (LRT) for eigenvalues and eigenvectors
of M under the assumption of a symmetric matrix-variate Gaussian distribution with orthogonally invariant co-
variance are derived in [27, 29]. However, these works do not model positive definite matrix data directly. Instead,
a one-to-one matrix log transformation is applied to remove the positive-definite constraint before data analysis
[12, 25]. We attempt to include the positive definite constraint in the model so that we can include distributions
such as the Wishart and matrix-Gamma.

In hypothesis testing problems, the LRT is one of the most commonly used methods. The distribution of the
log likelihood ratio (LLR) depends on the geometry of the null and alternative parameter sets. It is well known
that if the null set M0 is nested in the alternative set Ma, i.e., the null set M0 is a subset of Ma and both sets are
algebraic subsets of Euclidean space (such as affine subspaces or differentiable manifolds), then as the sample
size n→ ∞, the LLR follows a χ2 whose degrees of freedom d equal the difference between the dimension of the
alternative set and that of the null set [21]. Thus, by embedding the matrices of interest in Euclidean space we can
also perform a LRT for the parameter matrix. For example, the LLR for the eigenvalues and eigenvectors of M are
asymptotically χ2 distributed when the null and alternative sets are closed embedded submanifolds corresponding
to hypotheses about the eigenvalues and eigenvectors of M [27, 29]. We use this device as well, as we consider
the same hypotheses tests but different distributions.

We have assumed a parametric distribution for the matrix-variate data to make inferences for the eigenstructure
of symmetric random matrix using MLE and LRT, since this assumption has all the convenience of parametric
models in terms of analytic expressions and can be efficiently applied to each of tens of thousands of voxels in DTI
data. One motivation of our work is that the Gaussian model, which is described in [29], may not be appropriate
for the distribution of diffusion tensors in DTI. Previously, the comparison of two different groups in DTI was
usually performed under the normal assumption [5], but some literature suggests that the distribution of diffusion
tensors may be Gamma, rather than Gaussian [16, 24]. So, we propose to call on a class of distributions that
includes several commonly used models.

In this paper, we consider an exponential family, which includes many common distributions such as the
matrix-variate Gaussian, exponential, matrix-Gamma, and Wishart distribution. Exponential families for univari-
ate and multivariate data and inference methods for them are well known [9, 21]. Analogous to other multivariate
exponential families, we define a matrix-variate version of an exponential family. Analytical calculations are
possible if the distribution is assumed to be equivariant under orthogonal transformations. With this exponential
family form, we can estimate and test the eigenstructure of M in the general exponential family using MLE and
LRT. Then we can apply the result to each specific distribution.

In our problem, the parameter space is, in general, a submanifold of Euclidean space. For instance, requiring
the eigenvalue matrix to be diagonal creates a linear submanifold in the Euclidean space of square matrices of
size p. In contrast, the constraint that the eigenvector matrix should be orthogonal defines an algebraic curved
submanifold. For this reason, we cannot use the usual method for calculating MLEs in a Euclidean space. Instead,
we obtain the critical points by finding the score function in two ways: (i) using the projection of the unrestricted
gradient onto the manifold or (ii) tracing a curve directly on the manifold. Once we have the score function
by either method, we obtain critical points by setting the score function equal to 0. These points maximize the
likelihood because of convexity, so we can get the MLEs. Using the MLEs derived from this procedure, we
perform LRTs for the hypotheses related to the constraints on the eigenstructure of the parameter matrix M.

The organization of the paper is as follows. We first demonstrate the definition and properties of the matrix-
variate exponential family and give expressions for the moments of this family. Then we derive the MLE and LRT
for the eigenvalues and eigenvectors of the mean parameter M with some restrictions on the eigenstructures, based
on the orthogonally equivariant (OE) property of the exponential family. The inference problems are essentially
the same as those considered by [29], but the solutions are given in greater generality, being applicable in a more
general distribution family. Numerical studies are also provided to check the validity of our derived estimators
and testing procedures under non-asymptotic conditions. The methods are illustrated with a DTI data set also
analyzed in [28]. The goals of the analysis are to compare brain images and find regions of anatomic difference
between two groups. Here we use our derived estimators and testing procedures instead of those derived under the

2



Gaussian assumption. We show that changing the modeling assumptions has a substantial impact on the results.
Proofs of all the theorems, propositions and properties in this article can be found in the Online Supplement.

All the simulations and data analysis in this article were performed in R.

2. Exponential family of symmetric variate random matrices

2.1. Matrix-variate exponential family

2.1.1. Definition
Suppose the probability density of a p × p symmetric random matrix Y can be written in the form

f (Y; Θ) = H(Y)e[tr{η(Θ)T (Y)}−K{η(Θ)}], (1)

where Θ is an original parameter matrix, the p × p symmetric matrix T (Y) is referred to as a sufficient statistic,
and η is called a natural parameter. Here H(Y) is a scalar function that does not depend on the value of Θ. The
function K(η) is the logarithm of the normalization factor, and we assume that K(η) is twice differentiable. Then,
Y is said to belong to an exponential family of distributions, and we call (1) the canonical form of the exponential
family.

In this paper, we focus on estimating and testing the mean parameter M = E{T (Y)}, where Y , M, T (Y), and
η(M) are symmetric. Any other parameters, such as the variance or the scale and shape parameters are considered
as nuisance parameters. Therefore, we rewrite (1) as a function of M, which has the form

f (Y; M) = H(Y)e[tr{η(M)T (Y)}−K{η(M)}]. (2)

Example 1. The probability density function (pdf) of the symmetric matrix-variate Gaussian distribution with
spherical covariance in [29], denoted as Y ∼ Npp(M, σ2Iq), is given by

f (Y; M) =
1

(2π)q/2σq e−
1

2σ2 tr{(Y−M)2}
= H(Y)e

1
2σ2 tr(2Y M−M2),

where q = p(p + 1)/2. As it can be written in the canonical form, it is an exponential family. In this case, we have

H(Y) =
1

(2π)q/2σq e−
1

2σ2 tr(Y2), η(M) =
M
σ2 , T (Y) = Y, K{η(M)} =

1
2σ2 tr(M2).

Example 2. The pdf of the matrix-Gamma distribution is given by

f (Y; M) =
|M|−α

α−αpΓp(α)
|Y |α− p+1

2 eαtr{−(M−1Y)} = H(Y)eα{−tr(M−1Y)−ln |M|},

where Γp(α) is the multivariate gamma function defined, for any positive definite matrix S , by

Γp(α) = πp(p−1)/4
p∏

j=1

Γ

(
α +

1 − j
2

)
.

As it can be rewritten in the canonical form of an exponential family, it is an exponential family. We have

H(Y) =
|Y |α− p+1

2

α−αpΓp(α)
, η(M) = −αM−1, T (Y) = Y, K{η(M)} = α ln |M|.

Other examples include the Inverse-Gamma distribution (including the Inverse-Wishart distribution) and the
matrix-variate Beta (both type I and II) distribution [13].

2.1.2. Moments
To obtain the general form of the moments of T (Y) in the exponential family, we will use a vectorization

operator for any symmetric matrix X defined in [29], viz.

vecd(X) = (diag(X)>,
√

2 offdiag(X)>)>,
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where the diag(X) operator is defined as the vector whose elements are the diagonal elements of X, and offdiag(X)
is defined as the vector that is a vectorization of the upper (or lower) triangular part of X. Using this operator, the
correlation between diagonal elements and off-diagonal elements of a matrix is seen more clearly. The fact that
all off-diagonal elements are multiplied by

√
2 implies that the equation vecd(A)>vecd(B) = tr(AB) is satisfied,

so we can easily present the trace of a matrix product as an inner product of two vectors. We can also connect this
definition to vec operator, by choosing a duplication matrix D such that vec(Y) = Dvecd(Y). Such a duplication
matrix always exists for any p, although it is generally not unique.

Theorem 1. The expected value and covariance matrix of T (Y) are as follows.

(i) M = E{T (Y)} = ∂K{η(M)}/∂η(M).

(ii) cov[vecd{T (Y)}] =
∂2K{η(M)}

∂vecd{η(M)}∂vecd{η(M)}> .

The proof of Theorem 1 is given in the Online Supplement. The basic idea consists of differentiating the
moment generating function of T (Y) with respect to a matrix argument.

2.2. Orthogonal equivariance of the exponential family

Orthogonal equivariance is an additional property imposed on the exponential family that makes it easier
to obtain analytical expressions for the MLEs and LLRs considered in this work. To make this explicit, some
definitions and assumptions are given first.

Definition 1. A square matrix function a(X) of square matrix argument X is analytic if a(X) can be represented
in the form of a convergent power series such that a(X) =

∑∞
k=−∞ ckXk for some coefficients ck. In particular, an

analytic function is infinitely differentiable.

Definition 2. Let X be a square matrix.

(i) A function g(X) is orthogonally invariant if g(X) satisfies g(RXR>) = g(X) for any orthogonal matrix R.

(ii) A squared matrix function g(X) is orthogonally equivariant (OE) if g(X) satisfies g(RXR>) = Rg(X)R> for
any orthogonal matrix R.

Note that an analytic function a(X) is OE, since an analytic function satisfies a(PXP−1) = Pa(X)P−1 for any
invertible matrix P and an orthogonal matrix R satisfies R−1 = R>. Another way to understand the OE property
from the point of view of representation theory is as follows. The special orthogonal group S O(p) is a group under
matrix multiplication and acts on the set of p×p symmetric positive definite matrices by a similarity transformation
[18, 27]. The function g is OE if it commutes with this group action.

Definition 3. If a pdf f (·; M) satisfies f (Y; M) = f (RYR>; RMR>) for any orthogonal matrix R, the pdf is then
said to be an OE family.

Assumption 1. For a density function f (·; M) that has the form (2), we assume that (i) K and H are orthogonally
invariant functions, η is an analytic function, and T is an OE function.

Proposition 1. Let f (·; M) have the form (2) and suppose that Assumption 1 holds. Then, the density of Y is an
OE family.

It can be seen that both the spherical Gaussian and matrix-Gamma distributions of Examples 1 and 2 have OE
density functions.

Corollary 1. Let W = RT (Y)R> and M̃ = RMR> for any orthogonal matrix R. Suppose the pdf of Y is an OE
family. Then,

(i) E(W) = ∂K{η(M̃)}/∂η(M̃) = M̃;

(ii) cov{vecd(W)} =
∂2K{η(M̃)}

∂vecd{η(M̃)}∂vecd{η(M̃)}> .
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2.3. Eigenvalue parameterization

Now, consider the eigenstructure of M, denoted as M = UDU>, where D is a diagonal matrix whose elements
are eigenvalues of M and U is an eigenvector matrix corresponding to D. Then, we can rewrite the pdf as a
function of U and D as

f (Y; U,D) = H(Y)e[(tr{Uη(D)U>T (Y)}−K{η(D)}].

The following useful lemma establishes the moments of the random matrix T (Y) rotated by the eigenvectors.

Lemma 1. Suppose all the assumptions in Corollary 1 are satisfied and W = RT (Y)R>. The following statements
then hold.

(i) E(W) = ∂K{η(M̃)}/∂η(M̃)
∣∣∣
R=U> = D;

(ii) cov{vecd(W)} =
∂2K{η(M̃)}

∂vecd{η(M̃)}∂vecd{η(M̃)}>
∣∣∣∣∣∣
R=U>

= V is a diagonal matrix, i.e., all the elements in W =

U>T (Y)U are mutually uncorrelated.

3. Inferences for eigenstructures in the one-sample problem

3.1. Likelihood for estimating M

Let Y1, . . . ,Yn be a random sample of size n from the density (2). The log likelihood function with respect to
M is then

`(M; Y1, . . . ,Yn) ∝ tr

η(M)
n∑

i=1

T (Yi)

 − nK{η(M)} = ntr{η(M)T̄ (Y)} − nK{η(M)},

where T̄ (Y) = {T (Y1) + · · ·+ T (Yn)}/n. In this paper, we are interested in the eigenstructure of the mean parameter.
Setting M = UDU>, we see that the likelihood with respect to U and D is

`(M; Y1, . . . ,Yn) ∝ ntr{η(UDU>)T̄ (Y)} − nK{η(UDU>)} = ntr{Uη(D)U>T̄ (Y)} − nK{η(D)},

where the simplified expression in the second row follows from Assumption 1. Note that the last term does not
depend on U. Some matrix properties that are necessary to derive the following estimates of M, U, and D are
given in the Online Supplement.

3.2. Inference for M in the unrestricted case

To fix ideas, we first present the inference for the mean parameter M, without any restriction on the eigen-
structure. Using the central limit theorem, we can obtain the following result.

Theorem 2. Let Y1, . . . ,Yn be a random sample from the pdf f (·; M) in (2). If there is no restriction for estimating
M, then (i) the MLE of M is M̂ = T̄ (Y); and (ii) the asymptotic distribution of M̂ is

√
n {vecd(M̂) − vecd(M)} N[0, cov[vecd{T (Y)}]],

where cov[vecd{T (Y)}] is the covariance matrix of vecd{T (Y)} in the exponential family given in Theorem 1.

The LRT statistic for the hypothesis test ofH0 : M = M0 vs. Ha : M , M0 is

2(`a − `0) = 2n[tr[[η{T̄ (Y)} − η(M0)]T̄ (Y)] + K{η(M0)} − K[η{T̄ (Y)}]],

and it follows a χ2
q distribution asymptotically as n → ∞. This is obtained by noticing that under H0, the MLE

for M is just M̂ = M0 while underHa, the MLE of M is T (Y). This test shows whether the mean parameter has a
specific value.
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3.3. Inference for eigenvectors

Now, we focus on the inference for the eigenstructure. According to the restrictions for the structure of the
mean parameter M = UDU>, we have different estimates. The following result gives the MLE of the eigenvectors
and its asymptotic distribution.

Theorem 3. Let Y1, . . . ,Yn be a random sample from the pdf f (·; M) in (2) and assume the pdf of Y is an OE
family. Suppose that D is fixed at D0, with diagonal entries in non-increasing order, with k distinct eigenvalues
and corresponding multiplicities m1, . . . ,mk.

(i) Let the decomposition T̄ (Y) = VΛV> be chosen so that Λ and D0 have their diagonal entries in the same
rank order. Then, defining Op as a set of p × p orthogonal matrices, the MLE of U is Û = VQ, where
Q ∈ Op satisfies the condition that QD0Q> = D0, i.e., Q is a block diagonal matrix with orthogonal blocks
of size m j. If the diagonal entries of D0 are distinct, then Q has diagonal entries ±1.

(ii) Suppose all the elements of D0 are distinct so M has unique eigenvectors U up to sign. Let Û be chosen
to minimize the norm ||UÛ> − Ip|| and let Â = ln(U>Û) ∈ Ap, where Ap denotes a set of p × p antisym-
metric matrices. Then, as the sample size n gets larger, the off-diagonal entries of Â denoted by (âi j)i, j are
asymptotically independent, and for any i , j one has, as n→ ∞,

√
n âi j

2
√

[{η(D0)i − η(D0) j}2var(wi j)]−1
 N(0, 1),

where wi j is the (i, j)th element of W = U>T (Y)U.

Note that the variance of each off-diagonal entry (i, j) of A increases without bound as η(D0)i and η(D0) j get
closer to one another. In the limit, when η(D0)i = η(D0) j, the variance goes to infinity and η(D0)i and η(D0) j can
no longer be estimated separately because the two parameters become unidentifiable. In fact, in that situation, the
dimension of the parameter space goes down by 1.

In part (ii) of Theorem 3 above, we assume that eigenvalues are known and distinct, so they can be ordered.
Thus, the problem of testing whether a set of eigenvectors is equal to U0 is formulated as a test of whether
the columns of U0 are the eigenvectors corresponding to the ordered eigenvalues in D0. Let MD0 be MD0 =

{M = UD0U> : U ∈ Op} and T̄ (Y) = VΛV> be an eigendecomposition where the diagonal elements of Λ are
in non-increasing order. Using the MLE in Theorem 3, the LRT statistic for testing H0 : M = U0D0U0

> vs.
Ha : M ∈MD0 is

2(`a − `0) = 2n[tr{η(D0)(Λ − U0
>T̄ (Y)U0)}],

which is asymptotically χ2 with q −∑k
i=1 mi(mi + 1)/2 degrees of freedom, where for each i ∈ {1, . . . , k}, mi is the

multiplicity corresponding to ith distinct eigenvalue of M [29].

3.4. Inference for eigenvalues

We now consider inference for the eigenvalues of mean parameter.

Theorem 4. Let Y1, . . . ,Yn be a random sample from (2) and suppose that Assumption 1 is satisfied. Then the
following statements hold true.

(i) Let W̄ = U>T̄ (Y)U. If we assume that U = U0 is fixed, then the MLE of D is D̂ = diag{U0
>T̄ (Y)U0} =

diag(W̄), where diag(X) denotes the diagonal matrix whose diagonal elements are the diagonal entries of
the matrix X.

(ii) If we assume that U = U0 is fixed, then the asymptotic distribution of diagonal entries of D̂ = diag(W̄)
denoted by (d̂i) is √

n (d̂i − di)√
var(wii)

 N(0, 1),

where wii is the ith diagonal element of W = U>YU.

An associated test is whether the eigenvalues of the mean parameter M are different from some fixed values
while the eigenvectors are fixed. Let MU0 = {M = U0DU0

> : D ∈ Dp}, where Dp denotes the set of p× p diagonal
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matrices. Then, under the hypothesis thatHa : M ∈MU0 , the MLE of D is D̂ = diag{U0
>T (Y)U0}, using the result

of Theorem 4 with restriction U = U0. The LRT statistic for testingH0 : M = U0D0U0
> vs. Ha : M ∈MU0 is

2(`a − `0) = 2n[tr[U0{η(D̂) − η(D0)}U0
>T̄ (Y)] − K{η(D̂)} + K{η(D0)}]

and it asymptotically follows χ2
p, since the number of parameters tested is p.

3.5. MLE of eigenvectors and eigenvalues with known multiplicities

In this section, we assume that we do not know the eigenvalues or the eigenvectors, but the order and multi-
plicity of the eigenvalues are known. To state the results, we first need to define how to perform block averages.

Definition 4. Define the block average of a diagonal matrix B according to the multiplicities m1, . . . ,mk, as
the block diagonal matrix formed by partitioning B into k diagonal blocks of sizes m1, . . . ,mk and replacing the
diagonal entries in each block by the mean of the diagonal entries in each block. Denote this term operator as
blkm1,...,mk (B). If we denote the original diagonal blocks as B11, . . . , Bkk, then the jth diagonal block of blkm1,...,mk (B)
has the form (1/m j)tr(B j j)Im j .

Definition 5. For any square matrix B, define Blkm1,...,mk (B) = blkm1,...,mk {diag(B)}. Denote the diagonal block of
B with respect to the multiplicities m1, . . . ,mk as B11, . . . , Bkk. Then, each diagonal block of Blkm1,...,mk (B) has the
form (1/m j)tr(B j j)Im j . If B is a diagonal matrix, then Blkm1,...,mk (B) = blkm1,...,mk (B).

Theorem 5. Let Mm1,...,mk be the set of symmetric matrices which have k distinct eigenvalues with multiplicities
m1, . . . ,mk, i.e., Mm1,...,mk = {M = UDU> : U ∈ Op,D ∈ Dp, d1 ≥ · · · ≥ dk,mult. m1, . . . ,mk}. Let T̄ (Y) =

VΛV> be an eigendecomposition, where the diagonal elements of Λ are in non-increasing order. Suppose that
D is unknown but the order and multiplicities of D are known. Then the MLE of M is M̂ = ÛD̂Û>, where
D̂ = Blkm1,...,mk (Λ) and Û is any matrix that has the form Û = VQ and Q ∈ Op satisfies the condition that QD̂Q>

is a diagonal matrix. Here, Q must be a block diagonal matrix with orthogonal blocks of size m1, . . . ,mk, in that
order.

Using the MLE values obtained from Theorem 5, we can test whether the eigenvalues of the matrix M
have particular multiplicities. Using the notation Mm1,...,mk = {M = UDU> : U ∈ Op,D ∈ Dp, d1 ≥ · · · ≥
dk,mult. m1, . . . ,mk}, the test comparesH0 : M = UDU> ∈Mm1,...,mk toHa : M <Mm1,...,mk . The test statistic is

2(`a − `0) = 2n[tr{(η(Λ) − Qη(D̂)Q>)Λ} − K{η(Λ)} + K{η(D̂)}],

where D̂ is the MLE under the restriction, which is obtained from Theorem 5, and M̂ = T̄ (Y) = VΛV> is the MLE
from Theorem 2, which maximizes the likelihood without any restriction. It is asymptotically χ2 with

∑k
i=1 mi(mi +

1)/2 − k degrees of freedom. The number of degrees of freedom is the difference between the dimension of
alternative parameter space q and the dimension of Mm1,...,mk , which is equal to k + q −∑k

i=1 mi(mi + 1)/2.

4. Inferences for eigenstructures in the two-sample case

In the previous section, we only considered problems for one-sample cases. Now, we will look at two-sample
problems. Let Y1, . . . ,Yn1 and Yn1+1, . . . ,Yn, n = n1 + n2 be two independent iid samples from two exponential
family distributions f (Y; M1) and f (Y; M2), and let M1,M2 be their respective means. Here, we are interested
in estimating and testing the pair of means M = (M1,M2). In general, the inference depends on other nuisance
parameters, such as variance parameters and shape parameters.

4.1. Estimation in the two-sample case under the same nuisance parameters

In order to obtain analytical expressions, we assume here that the nuisance parameters are the same in both
distributions. We start from the joint likelihood function of the two samples. With the assumption that η1 = η2 = η,
the form of the joint likelihood function is

L =

n1∏

i=1

H(Yi)e[tr{η(M1)T1(Yi)}−K{η(M1)}]
n∏

j=n1+1

H(Y j)e[tr{η(M2)T2(Y j)}−K{η(M2)}].
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Now, assuming the eigendecompositions M1 = U1DU>1 and M2 = U2DU>2 with common eigenvalue matrix D,
the log likelihood can be written as

`(M; Y1, . . . ,Yn) ∝ n1[tr{η(M1)T̄1(Y)} − K{η(M1)}] + n2[tr{η(M2)T̄2(Y)} − K{η(M2)}]
∝ n1tr{U1η(D)U>1 T̄1(Y)} + n2tr{U2η(D)U>2 T̄2(Y)} − (n1 + n2)K{η(D)}.

Theorem 6. Define the set M2,D = {(M1,M2) : M1 = U1DU1
>,M2 = U2DU2

>,U1,U2 ∈ Op,D ∈ Dp,mult.
m1, . . . ,mk, diag. entries of D are in non-increasing order} and let Ȳ1 = V1Λ1V1

>, Ȳ2 = V2Λ2V2
> be eigendecom-

positions of the two sample means, where the diagonal elements of Λ1,Λ2 are in non-increasing order. Suppose
that D is unknown but the order and multiplicities of D are known and η is the same for the two groups. Then, the
MLEs of M1 and M2 are M̂1 = Û1D̂Û>1 and M̂2 = Û2D̂Û>2 , respectively, where

(i) Û1 and Û2 are any matrices that have the form Û1 = V1Q1 and Û2 = V2Q2, where Q1,Q2 ∈ Op satisfy the
condition that Q1D̂Q>1 = D̂, Q2D̂Q>2 = D̂;

(ii) D̂ = Blkm1,...,mk

(
n1Λ1 + n2Λ2

n1 + n2

)
.

Next, we assume that η1(D) , η2(D). Then, the log likelihood function is

`(M; Y1, . . . ,Yn) ∝ n1tr{U1η1(D)U>1 T̄1(Y)} + n2tr{U2η2(D)U>2 T̄2(Y)} − n1K{η1(D)} − n2K{η2(D)}.

Theorem 7. Let Ȳ1 = V1Λ1V1
>, Ȳ2 = V2Λ2V2

> be eigendecompositions of two sample means, where the diagonal
elements of Λ1,Λ2 are in non-increasing order. Suppose that D has the multiplicities m1, . . . ,mk and is the same
for two groups but that the η’s are different. Then, the MLEs of M1 and M2 are M̂1 = Û1D̂Û>1 and M̂2 = Û2D̂Û>2 ,
respectively, where

(i) Û1 = V1Q1 and Û2 = V2Q2, where Q1,Q2 ∈ Op satisfy the condition that Q1D̂Q>1 = D̂, Q2D̂Q>2 = D̂.

(ii) D̂ii = Blkm1,...,mk


n1(Λ1)ii

∂η1(D)ii
∂Dii

+ n2(Λ2)ii
∂η2(D)ii
∂Dii

n1
∂η1(D)ii
∂Dii

+ n2
∂η2(D)ii
∂Dii


.

4.2. Testing in the two-sample case under the same nuisance parameters

4.2.1. Full matrix test
First we start with the test of H0 : M1 = M2 vs. Ha : M1 , M2. This is a test of whether the means of

two groups are equal. Under H0, the MLE for M1,M2 is just the MLE of the one-sample case with sample size
n = n1 + n2. By setting T̄ (Y) = {n1T̄1(Y) + n2T̄2(Y)}/n, we have M̂1 = M̂2 = T̄ (Y). Then, the LRT statistic for this
hypothesis is

2(`a − `0) = 2[n1tr{η(T̄1(Y))T̄1(Y)} + n2tr{η(T̄2(Y))T̄2(Y)} − n1K{η(T̄1(Y))}
− n2K{η(T̄2(Y))} − ntr{η(T̄ (Y))T̄ (Y)} + nK{η(T̄ (Y))}],

and it follows a χ2
q distribution asymptotically, since the number of parameters tested is q.

4.2.2. Testing for the eigenvectors
We move to the testing for the eigenstructure of M1 and M2. A test of eigenvectors can be performed by

testing the hypothesis thatH0 : M1 = M2 vs. Ha : (M1,M2) ∈ M2,D. This is the test of equal sets of eigenvectors
when the two mean parameters have the same eigenvalues. Under H0, the MLE for M1,M2 is just the MLE in
the one-sample case with sample size n = n1 + n2. Setting T̄ (Y) = {n1T̄1(Y) + n2T̄2(Y)}/n = VΛV>, we have
M1 = M2 = ÛD̂∗Û>, where Û = VQ and D̂∗ = Blkm1,...,mk (Λ) are calculated by the one-sample case formula in
Theorem 5, with the sample size n = n1 + n2. Then, the test statistic is

2(`a − `0) = 2[n1tr{Û1η(D̂)Û>1 T̄1(Y)} + n2tr{Û2η(D̂)Û>2 T̄2(Y)} − nK{η(D̂)} − ntr{Ûη(D̂∗)Û>T̄ (Y)} + nK{η(D̂∗)}]
= 2[n1tr{η(D̂)Λ1} + n2tr{η(D̂)Λ2} − ntr{η(D̂∗)Λ} + n{K(η(D̂∗)) − K(η(D̂))}],
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and it follows the χ2 distribution asymptotically. The degrees of freedom are the difference between the dimension
of the alternative parameter set and that of the null parameter set, viz.

k + 2q −
k∑

i=1

mi(mi + 1)

 −
q + k −

k∑

i=1

mi(mi + 1)/2

 = q −
k∑

i=1

mi(mi + 1)/2.

4.2.3. Testing for the eigenvalues
The next test is a test of whether the means of the two groups have the same eigenvalues, while differing on

their eigenvectors. The test is H0 : (M1,M2) ∈ M2,D vs. Ha : (M1,M2) < M2,D. The MLE for M1 and M2 under
the alternative hypothesis are just M̂1 = T̄1(Y), M̂2 = T̄2(Y). Therefore, the test statistic is

2(`a − `0) = 2[n1tr{η(T̄1(Y))T̄1(Y)} + n2tr{η(T̄2(Y))T̄2(Y)} − n1K{η(T̄1(Y))}
−n2K{η(T̄2(Y))} − n1tr{Û1η(D̂)Û>1 T̄1(Y)} − n2tr{Û2η(D̂)Û>2 T̄2(Y)} − nK{η(D̂)}]

= 2[n1tr{η(Λ1)Λ1} + n2tr{η(Λ2)Λ2} − n1K{η(Λ1)} − n2K{η(Λ2)}
−n1tr{η(D̂)Λ1} − n2tr{η(D̂)Λ2} + K{η(D̂)}]

and it is asymptotically χ2. The degrees of freedom are the difference between the dimension of the alternative
parameter set and that of the null parameter set, viz.

2q −
k + 2q −

k∑

i=1

mi(mi + 1)

 =

k∑

i=1

mi(mi + 1) − k.

4.3. Extension to multiple groups
We can extend the idea of estimation and hypothesis testing described in Sections 4.1. and 4.2. to the multiple-

group case. For each i ∈ {1, . . . , g}, let Yi1, . . . ,Yini be g independent iid samples from g exponential family
distributions f (Y; Mi). Let also n = n1 + · · · + ng. Here the g distributions have the same form but different mean
parameter M1, . . . ,Mg. We can write the joint likelihood of g groups as follows:

L =

g∏

i=1

ni∏

j=1

H(Yi j)e[tr{ηi(Mi)Ti(Yi j)}−Ki{ηi(Mi)}].

Using the eigendecompositions Mi = UiDiU>i , the log likelihood of g group data can be written as

`(Mi; Y11, . . . ,Ygng ) ∝
g∑

i=1

ni[tr{ηi(Mi)T̄i(Y)} − Ki{ηi(Mi)}] ∝
g∑

i=1

ni[tr{Uiηi(Di)U>i T̄i(Y)} − Ki{ηi(Di)}].

Then, we can estimate the MLE of Mi,Ui and Di using this joint log- likelihood. In particular, estimates may be
obtained under ANOVA-type assumptions such as M1 = · · · = Mg or D1 = · · · = Dg with given eigenvalue multi-
plicities. In the latter case, multi-group versions of Theorems 6–7 hold for common and different η, respectively.
The eigenvector estimates have the same forms as the ones there and the eigenvalue estimates contain the sums
of g terms instead of only two. Given these estimates, the log-likelihood ratio test statistics can be written down
similar to those in Sections 4.2.1, 4.2.2 and 4.2.3 (with indices ranging from 1 to g instead of 1 to 2) in order to
test equality of means, equality of eigenvectors and equality of eigenvalues, respectively. The number of degrees
of freedom can be easily adjusted accordingly.

5. Estimating nuisance parameters

In addition to estimating M and calculating related test statistics, in practice, we need to estimate other pa-
rameters such as variance components, scale parameters, and shape parameters. Thus, we need to estimate these
parameters under the restrictions we have made for the mean parameter.

5.1. Gaussian distribution with spherical covariance matrix
5.1.1. Test of sphericity of covariance matrices

In the Gaussian distribution example, we assume that the covariance matrix is spherical. Thus, estimation and
tests for M and σ2 are derived based on this assumption. In data analysis, however, we need to test whether this
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assumption holds. Here, we use a special case of the test of orthogonal invariance described in [29]. The test
statistic considered there is

To = nq ln(σ̂2) − n ln(1 − pτ̂) − n ln |S |,
where S is the sample covariance matrix and τ is an additional parameter required by the orthogonally invariant
Gaussian distribution. This test statistic follows a χ2 distribution with d f = q(q + 1)/2 − 2, since the dimension
of the parameter space underHa is q(q + 1)/2 and the dimension of null parameter space is 2.

To test sphericity, we set τ = 0 in the above test. Then, the null hypothesis for this test is that the covariance
matrix is spherical. As τ = 0, the test statistic for the sphericity of a covariance matrix is simplified as

Ts = nq ln(σ̂2) − n ln |S |,
which follows the χ2 distribution with q(q + 1)/2 − 1 degrees of freedom. The number of degrees of freedom
changes because the dimension of the null parameter space is reduced to 1.

5.1.2. Estimating covariance parameters in the one-sample case
If the null hypothesis of the sphericity test is not rejected, the next step is to find an appropriate way to

estimate the variance parameter. In the case of Gaussian distribution with a spherical covariance matrix that has
the likelihood

`(M, σ2; Y) = −nq
2

lnσ2 − 1
2σ2

n∑

i=1

tr{(Yi − M)2},

we have the variance parameter σ2. To find the distribution of M̂, we also need to estimate σ2. Here, we use the
MLE for σ2 described in [29], viz.

σ̂2 =
1

qn

n∑

i=1

tr(Yi − Ȳ)2 +
1
q

tr(Ȳ − M̂)2, (3)

where M̂ is the MLE under any of the eigenvalue or eigenvector restrictions. This form is obtained by taking the
derivative with respect to σ2 and setting it equal to 0.

Proposition 2. Let σ̂2 be given by (3). Then qnσ̂2/σ2 ∼ χ2
q(n−1)+d fr

, where d fr is the difference between the
dimension of Ȳ and the dimension of M̂.

5.1.3. Estimating covariance parameters in the two-sample case
For the two-sample Gaussian case, we have two options: equal or unequal covariance matrix assumption. In

general, the equal covariance matrix assumption is preferred because it makes it possible to use Hotelling’s T 2 test
when we compare two group means, which is simpler and has an exact distribution. If the covariance matrices are
not equal, we should use other alternative tests such as the Behrens–Fisher test, which is more complicated and its
distribution is only approximate.

If we assume that the covariance matrices of the two groups are spherical and equal, then we use a pooled
estimate σ̂2

12 of the common variance. The estimate has the form

σ̂2
12 = s2

12 +
1

q(n1 + n2)
{n1tr(Ȳ1 − M̂1)2 + n2tr(Ȳ2 − M̂2)2},

where

s2
12 =

1
q(n1 + n2)


n1∑

i=1

tr(Yi − Ȳ1)2 +

n2∑

i=1

tr(Yi − Ȳ2)2



and M̂1, M̂2 are the MLEs under the relevant eigenvalue and eigenvector restrictions [29]. Like the one-sample
case, {n1tr(Ȳ1 − M̂1)2 + n2tr(Ȳ2 − M̂2)2}/σ2 also follows the χ2 distribution, with degrees of freedom that depend
on the differences between the dimension of (Ȳ1, Ȳ2) and that of (M̂1, M̂2) (denoted by d fr2).

If we assume that two variance parameters are different, we can estimate two variance parameters separately.
For i ∈ {1, 2}, we have

σ̂i
2 =

1
qni

ni∑

j=1

tr(Yi j − Ȳi)2 +
1
q

tr(Ȳi − M̂i)2,
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where M̂is are the MLE of Mi under the corresponding restrictions. The procedure is the same as the one-sample
case described in Proposition 2, since each group can be treated as one sample.

In addition, using the property that

s2
i = 1/qni

ni∑

i=1

tr(Yi − Ȳi)2

has the distribution qnis2
i /σ

2 ∼ χ2
q(ni−1) for i ∈ {1, 2}, as mentioned in the proof of Proposition 5.1, nitr(Ȳi−M̂i)2/σ2

also follows the χ2 distribution, with degrees of freedom which is the difference between the dimension of Ȳi and
the dimension of M̂i (denoted by d fri ). As described in Proposition 2, note that σ̂2

i is equal to the sum of si
2 and

2(`a − `0) and the two are independent. Since the sum of two independent χ2-distributed statistics also follows a
χ2 distribution, qniσ̂

2
i /σ

2 follows a χ2 distribution with degrees of freedom q(ni − 1) + d fri .

5.2. Matrix-Gamma distribution
5.2.1. Estimating shape parameters in the one-sample case

Recall that the pdf of matrix-Gamma distribution described in Example 2 is

f (Y;α,M) =
|M|−α

α−αpΓp(α)
|Y |α− p+1

2 eαtr{−(M−1Y)},

where α is a shape parameter. In one-sample cases, α can be estimated from the first derivative of the log likeli-
hood. Starting from the log likelihood with respect to α and M, we have

`(M, α) ∝ n

− ln Γp(α) + α

p lnα − ln |M| + 1
n

n∑

i=1

ln |Yi| − tr(M−1Ȳ)



 .

Taking the derivative with respect to α, we have

∂`

∂α
= −n ln |M| − n

∂ ln Γp(α)
∂α

+ np lnα + np +

n∑

i=1

ln |Yi| − ntr(M−1Ȳ).

Thus, the MLE of α should satisfy the condition that the first derivative of likelihood evaluated at M = M̂, the
MLE under each restriction, is equal to 0. Therefore, the MLE of α satisfies the equation

p lnα − ∂ ln Γp(α)
∂α

= ln |M̂| + tr(M̂−1Ȳ) − 1
n

n∑

i=1

ln |Yi| − p.

Since there is no analytical expression for multivariate Gamma function, there is no closed-form solution for α.
However, the equation for α presented above is numerically well behaved. Therefore, if a numerical solution is
desired, it can be found using an approximation method. Thus, we estimated α̂ using this formula and numerical
computation via Newton’s method.

As α̂ is the MLE, we can find the asymptotical distribution of the estimated value, using the property of MLE
that the asymptotic variance is the inverse of Fisher’s information number.

Proposition 3. Let α̂ be the MLE of α. Then,

√
n (α̂ − α) N

0,
{
∂2 ln Γp(α)

∂α2 − p
α

}−1 .

5.2.2. Estimating shape parameters in the two-sample case
For the two-sample case, α1 and α2 can be estimated in the same manner as in the one-sample case. We have

the likelihood

`(M1,M2, α
2
1, α

2
2) ∝ n1

ln Γp(α1) + α1

p lnα1 − ln |M1| + 1
n1

n1∑

i=1

ln |Yi| − tr(M−T
1 Ȳ1)





+ n2

ln Γp(α2) + α2


p lnα2 − ln |M2| + 1

n2

n1+n2∑

j=n1+1

ln |Y j| − tr(M−T
2 Ȳ2)



 .
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Taking the derivative with respect to each αi, we have

∂`

∂α1
= −n1 ln |M1| − n1

∂ ln Γp(α1)
∂α1

+ n1 p lnα1 + n1 p +

n1∑

i=1

ln |Yi| − n1tr(M−1
1 Ȳ1)

∂`

∂α2
= −n2 ln |M2| − n2

∂ ln Γp(α2)
∂α2

+ n2 p lnα2 + n2 p +

n2∑

i=1

ln |Yi| − n2tr(M−1
2 Ȳ2).

The value of αi should satisfy the condition that the first derivative of likelihood evaluated at Mi = M̂i is equal
to 0. However, since M̂i can be a function of both α1 and α2, depending on the restriction, estimates of αi cannot
be obtained separately. We can get the solution for α1 and α2 simultaneously by solving the above system of
equations.

As in the one-sample case, no closed-form solution for αi is available. Instead, the system of equations for αi

presented above can be solved using an approximation method such as a multivariate version of Newton’s method.
Thus, we estimate α̂i using this formula and numerical computation.

6. Numerical studies

6.1. Simulation setting
We performed simulation studies for the scenarios presented in Sections 3–4 to evaluate the distributions

of the estimators and the test statistics for finite sample sizes in comparison with their theoretical asymptotic
distributions, and evaluate their statistical power. The dimensions of the data matrices were chosen as p = 3 or
p = 4, depending on the scenarios.

In the case of the Gamma distribution, the shape parameter α should be greater than p. Since we do simulations
with p = 3 or p = 4 in this section, we set α = 4 for p = 3 and α = 5 for p = 4. In addition, since we ought to
use M/α for generation of matrix-Gamma data in R, we use M = αV for a p × p matrix V . We chose the same
value of M for the Gaussian distribution, and picked the covariance parameter as σ2 = 42 = 16 for p = 3, and
σ2 = 52 = 25 for p = 4.

6.1.1. Null distribution of test statistics
For the one-sample case, we performed the four tests listed below:

1. Test of means (Full Matrix test): H0 : M = U0D0U>0 vs. Ha : M is unrestricted.

2. Test of eigenvectors with fixed eigenvalues: H0 : M = U0D0U>0 vs. Ha : M ∈MD0 .

3. Test of eigenvalues with fixed eigenvectors: H0 : M = U0D0U>0 vs. Ha : M ∈MU0 .

4. Test of multiplicities: H0 : M ∈Mm1,...,mk vs. Ha : M is unrestricted.

Taking the dimension of the data matrices as p = 3, n = 100 iid samples were generated from the following
distributions:

1. Gaussian with M = diag(8, 8, 4) and cov{vecd(Y)} = 42I6.

2. Wishart distribution, with parameters α = 4 and M = diag(8, 8, 4).

With this dataset, we estimated the eigenvalues and eigenvectors of the mean parameter matrix using the
formulas derived in Section 3. The likelihood ratio test statistics and p-values were also computed for each
hypothesis test. This process was repeated r = 10,000 times, so 10,000 test statistics and p-values were computed
for each scenario.

In the two-sample case, we used the following three tests:

1. Test of means (Full Matrix test): H0 : M1 = M2 vs. Ha : M1 , M2.

2. Test of equality of two eigenvectors (eigenvector test): H0 : M1 = M2 vs. Ha : (M1,M2) ∈M2,D.

3. Test of eigenvalue structure (eigenvalue test) : H0 : (M1,M2) ∈M2,D vs. Ha : (M1,M2) <M2,D.

As in the one-sample case, we took the dimension of the data matrices to be p = 3, and n1 = n2 = 100 iid samples
were generated from the following distributions:
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1. Gaussian with M = Diag(12,8,4) and cov{vecd(Y)} = 42I6.

2. Wishart distribution, with parameters α = 4 and M = diag(12, 8, 4).

With these two groups of data, we estimated the eigenvalues and eigenvectors of the mean parameter matrices
using the formulas derived in Section 5. Then, using the estimated eigenvalues and eigenvectors, the likelihood
ratio test statistics and p-values were also computed for each hypothesis. This process was repeated r = 10,000
times, so 10,000 test statistics and p-values were computed for each scenario.

For p = 4, we performed the same process as in the case p = 3 with different parameters. In the one-sample
case, n = 100 iid samples were generated from the following distributions:

1. Gaussian with M = diag(15, 15, 10, 5) and cov{vecd(Y)} = 52I10.

2. Wishart distribution, with parameters α = 5 and M = diag(15, 15, 10, 5).

For the two-sample case, n1 = n2 = 100 iid samples were generated from the distributions:

1. Gaussian with M = diag(20, 15, 10, 5) and cov{vecd(Y)} = 52I10.

2. Wishart distribution, with parameters α = 5 and M = diag(20, 15, 10, 5).

6.1.2. Statistical power of tests
The simulation scenarios were based on [28], with dimension p = 3. In the one-sample case, under the null

hypothesis, n = 50 iid samples were generated from the following distributions:

1. Gaussian with M = Diag(12,8,4) and cov{vecd(Y)} = 42I6.

2. Wishart distribution, with parameters α = 4 and M = diag(12, 8, 4).

We considered two sets of alternatives to assess the power of the proposed test statistics. The first set of
alternatives was defined in terms of changes in the eigenvalues of M0. These alternatives were defined as Ma =

M0 + U0(∆D)U>0 , where ∆D is a diagonal matrix that represents changes in eigenvalues. This reduces to Ma =

M0 + ∆D in our simulation, since M0 is diagonal and U0 is the identity matrix. Four values of ∆D were chosen
from easier to harder to detect: (i) ∆D = (0.8, 0.8, 0.4); (ii) ∆D = (0.8,−0.8, 0.4), (iii) ∆D = (−0.4,−0.4, 0.4); (iv)
∆D = (0.2, 0.2, 0.2). It gets harder to detect as ∆D gets smaller.

The second set of alternatives was defined by changes in eigenvectors. Using Rodrigues’ rotation formula, a
rotation matrix Q ∈ O3 is given as

Q = exp


θ



0 −a3 a2

a3 0 −a1

−a2 a1 0




,

where a = (a1, a2, a3) is a unit vector representing the axis of rotation and θ is the rotation angle around this axis.
With this rotation matrix, the alternative is formulated as M = QM0Q>. Four unit vectors were chosen to make
the rotation matrix, with a fixed angle θ = π/12 for all cases: (i) a = 1/

√
3(−1,−1,−1); (ii) a = (1, 0, 0); (iii)

a = 1/
√

2(0, 1, 1); (iv) a = 1/
√

2(1, 0,−1).
With these datasets, we estimated eigenvalues and eigenvectors of the mean parameter matrix using the for-

mulas derived in Section 3, and the likelihood ratio test statistics were computed for each of the four scenarios
(Full Matrix Test, Eigenvalue test, Eigenvector test, and Multiplicity test). With these test statistics, the statistical
power was computed for each set of alternatives. This process is repeated r = 10,000 times.

In the two-sample case, one sample group was generated from the same process as the null hypothesis setting
in the one-sample case, with the same parameters, while the other group was generated under the alternative
hypothesis setting as the one-sample case (eigenvalue change, eigenvector change). The sample size was n1 =

n2 = 50 for each hypothesis set. With these two groups of data, we estimated eigenvalues and eigenvectors of the
mean parameter matrix for each group by using the formula derived in the Section 4. These were performed for
both Gaussian and Wishart distribution samples. Likelihood ratio test statistics and statistical powe were computed
for each of the three scenarios (Full Matrix Test, Eigenvalue test, Eigenvector test). This process was repeated
r = 10,000 times.
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(a) Gaussian (b) Matrix-Gamma

Figure 1: Distribution of p-values for hypothesis testing scenarios: one-sample case, with n = 100.

(a) Gaussian (b) Matrix-Gamma

Figure 2: Distribution of p-values for hypothesis testing scenarios: two-sample case, with n1 = n2 = 100.

6.2. Simulation results

6.2.1. Distribution of p-values
We evaluate the accuracy of the approximate distributions of test statistics by examining the pattern of em-

pirical distribution of plots. Figure 1 shows the distribution of the p-values for test statistics of each hypothesis
described above in the one-sample case. The closeness of the empirical cumulative distribution function of p-
values to the 45-degree line indicates the goodness of the fit. When we look at the plot, all tests show good
performances since these empirical distributions of p-values are near the 45-degree red line.

Figure 2 represents the distribution of the p-values for test statistics in the two-sample case. Like the one-
sample case, the closeness of the empirical cdf of p-values to the 45-degree line indicates the goodness of the fit.
When we examine the plots, we see that all tests show good performances since these empirical distributions of
p-values are close to the 45-degree red line. Thus, the derived distributions of test statistics are accurate.

Moving to the simulations for p = 4, Figure 3 shows the distribution of the p-values for test statistics of
each hypothesis described above in the one-sample case. Similar to the result of p = 3, all tests exhibit good
performance since these empirical distributions of p-values are near the 45-degree red line.

Figure 4 presents the distribution of the p-values for test statistics in the two-sample case when p = 4. Like
the one-sample case, all tests show good performances since these empirical distributions of p-values are close to
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(a) Gaussian (b) Matrix-Gamma

Figure 3: Distribution of p-values for hypothesis testing scenarios: p = 4, one-sample case, with n = 100.

(a) Gaussian (b) Matrix-Gamma

Figure 4: Distribution of p-values for hypothesis testing scenarios: p = 4, two-sample case, with n1 = n2 = 100.

the 45-degree red line. Thus, we can verify that the derived distributions of test statistics are accurate.

6.2.2. Statistical power of tests
Figures 5 and 6 show the results for various alternatives related to eigenvalue changes in the one-sample case.

When the eigenvalues are closer to each other, it is harder to detect the difference. By design, the eigenvalue tests
are the most powerful, with the full matrix tests not far behind. The eigenvector tests have no power since they
are not designed to capture changes in eigenvalues. Figures 7–8 show the results for various alternatives related
to the eigenvector changes in the one-sample case. For all alternatives, eigenvector tests are the most powerful,
while the eigenvalue tests have very little power.

Figures 9–10 represent the results for various alternatives related to the eigenvalue changes in the two-sample
case. Here, similar to the one-sample case, eigenvalue tests are the most powerful for all the alternatives and the
full matrix test is also powerful in both distributions. Still, eigenvector tests have no power since they are not
designed to capture changes in the eigenvalues. Figures 11–12 present the results for various alternatives related
to the eigenvector changes in the two-sample case. As in the one-sample case, eigenvector tests are the most
powerful in both distributions, while the eigenvalue tests have very little power.
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(a) (b) (c) (d)

Figure 5: ROC curves for eigenvalue changes: one-sample case, with n = 50, Gaussian sample. Four
eigenvalue-changing matrices are chosen as (a) ∆D = diag(0.8, 0.8, 0.4), (b) ∆D = diag(0.8,−0.8, 0.4), (c)
∆D = diag(−0.4,−0.4, 0.4), (d) ∆D = diag(0.2, 0.2, 0.2).

(a) (b) (c) (d)

Figure 6: ROC curves for eigenvalue changes: one-sample case, with n = 50, Wishart sample. Four
eigenvalue-changing matrices are chosen as (a) ∆D = diag(0.8, 0.8, 0.4), (b) ∆D = diag(0.8,−0.8, 0.4), (c)
∆D = diag(−0.4,−0.4, 0.4), (d) ∆D = diag(0.2, 0.2, 0.2).

(a) (b) (c) (d)

Figure 7: ROC curves for eigenvector changes: one-sample case, with n = 50, Gaussian sample. Four unit vectors
for rotation matrices are chosen as (a) a = (1/

√
3, 1/

√
3, 1/

√
3), (b) a = (1, 0, 0), (c) a = (0, 1/

√
2, 1/

√
2), (d)

a = (1/
√

2, 0,−1/
√

2). The angle θ = π/12 is fixed for all cases.

7. Real data example

7.1. Data description

We analyze a dataset from an observational study of brain images of children [28]. The dataset consists of 34
brain DTI images of 10-year old children, where 12 images are from boys and 22 images are from girls. The goal
of this data analysis is to see whether there exist regions that present anatomic differences between genders.
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(a) (b) (c) (d)

Figure 8: ROC curves for eigenvector changes: one-sample case, with n = 50, Wishart sample. Four unit vectors
for rotation matrices are chosen as (a) a = (1/

√
3, 1/

√
3, 1/

√
3), (b) a = (1, 0, 0), (c) a = (0, 1/

√
2, 1/

√
2), (d)

a = (1/
√

2, 0,−1/
√

2). The angle θ = π/12 is fixed for all cases.

(a) (b) (c) (d)

Figure 9: ROC curves for eigenvalue changes: two-sample Gaussian case, with n1 = n2 = 50. Four
eigenvalue-changing matrices are chosen as (a) ∆D = diag(0.8, 0.8, 0.4), (b) ∆D = diag(0.8,−0.8, 0.4), (c)
∆D = diag(−0.4,−0.4, 0.4), (d) ∆D = diag(0.2, 0.2, 0.2).

(a) (b) (c) (d)

Figure 10: ROC curves for eigenvalue changes: two-sample Wishart case, with n1 = n2 = 50. Four
eigenvalue-changing matrices are chosen as (a) ∆D = diag(0.8, 0.8, 0.4), (b) ∆D = diag(0.8,−0.8, 0.4), (c)
∆D = diag(−0.4,−0.4, 0.4), (d) ∆D = diag(0.2, 0.2, 0.2).

7.2. Analysis

To analyze the data, we assumed three possible distributions for the DT : Gaussian distribution, log-normal
distribution, and matrix-Gamma distribution. Our data consist of diffusion tensors, and the DTs in each voxel
are all positive definite by definition. So, the positive definite constraint for the data is satisfied in the log-normal
and the matrix-Gamma distributions. For the Gaussian distribution, we assume that the probability that matrices
are not positive definite is small. At each voxel, the two-sample comparisons are performed, by computing the
test statistics for each hypothesis test (eigenvector test, eigenvalue test, full matrix test) under each distribution
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(a) (b) (c) (d)

Figure 11: ROC curves for eigenvector changes: two-sample Gaussian case, with n1 = n2 = 50. Four unit vectors
for rotation matrices are chosen as (a) a = (1/

√
3, 1/

√
3, 1/
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3), (b) a = (1, 0, 0), (c) a = (0, 1/
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2, 1/

√
2), (d)

a = (1/
√

2, 0,−1/
√

2). The angle θ = π/12 is fixed for all cases.

(a) (b) (c) (d)

Figure 12: ROC curves for eigenvector changes: two-sample Wishart case, with n1 = n2 = 50. Four unit vectors
for rotation matrices are chosen as (a) a = (1/

√
3, 1/

√
3, 1/
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3), (b) a = (1, 0, 0), (c) a = (0, 1/
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2, 1/

√
2), (d)
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√

2, 0,−1/
√

2). The angle θ = π/12 is fixed for all cases.

assumption. With these test statistics, the corresponding p-values are also computed using their approximate null
distributions that were described in previous sections. For our data, n1 = 12, n2 = 22, and p = 3 at each voxel,
and we have v = 105,822 voxels in total inside the brain.

7.2.1. Model checking for the Gaussian model
Figure 13(a) presents the p-value distribution of the LRT and Box’s M test, which tests whether the covariance

matrices of the two groups are equal. The LRT statistic for this hypothesis test is

T = (n1 + n2) ln |S | − n1 ln |S 1| − n2 ln |S 2|,

where S i is a covariance matrix of each group and S = (n1Σ1 + n2Σ2)/(n1 + n2) is a pooled covariance matrix [21].
For a case where the sample size is small, Box’s M test [8] is also provided; one has M = γ(S u1 + S u2), where

γ = 1 − (2p2 + 3p − 1)
6(p + 1)

{(n1 − 1)−1 + (n2 − 1)−1 − 2(n1 + n2 − 2)−1}

and

S ui = (ni − 1) ln

∣∣∣∣∣∣∣

(
ni

ni − 1
S i

)−1 (n1 + n2)
(n1 + n2 − 2)

S

∣∣∣∣∣∣∣
.

Both the LRT and Box’s M test statistics follow the χ2 distribution with degrees of freedom q(q + 1)/2 asymptot-
ically. Since the plot shows that two lines of p-value distributions are far from 45-degree lines, we need to make
an assumption that the covariance matrices are different in most voxels.

Figure 13(b) shows the test of sphericity of covariance matrices for each voxel, as described in Section 5.1.1.
We can see that the distribution of p-values for boys and girls are far from the 45-degree line. Thus, in most
voxels, we reject the null hypothesis that the covariance matrices are spherical. Based on this result, we need to
make an arbitrary covariance assumption for the model.
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(a) Test for the equality of covariance (b) The test of spherical covariance

Figure 13: Model checking tests for Gaussian model

(a) Gaussian distribution (b) Wishart distribution assumption

Figure 14: The distribution of p-values:

7.2.2. Two-sample tests of the mean parameter
Under the Gaussian distribution assumption, we used an arbitrary covariance assumption, based on the result

of equality and the sphericity test in the previous section. The form of the test statistic and its distribution are
described in [28]. We used a sample covariance matrix which, for i ∈ {1, 2}, has the form

S i = ĉov{vecd(Yi)} =
1

ni − 1

ni∑

j=1

vecd(Yi j − Ȳi){vecd(Yi j − Ȳi)}>.

Figures 14(a) shows the empirical distribution of the p-values for the three tests. The full matrix test and eigen-
vector test are not so different from each other, but both are better than the eigenvalue test.

The matrix-Gamma distribution is defined for positive definite matrix data. Thus, we can also assume that the
original data follows the matrix-Gamma distribution but with different shape parameters, estimated as described
in Section 5.2. Figure 14(b) shows the empirical distribution of the p-values for the three tests with the matrix-
Gamma distribution assumption. Three tests are entangled in the high p-value area, but the eigenvector test is
the closest to the 45-degree line and the eigenvalue test is better than the other two tests. Therefore, to detect the
difference between these two groups, the eigenvalue test seems to be better.

19



Figure 15: The p-value level plot in scale − log10(p) at slice z = 49: Gaussian distribution

Figure 16: The p-value level plot in scale − log10(p) at slice z = 49 : matrix-Gamma distribution

7.2.3. p-value maps
Figure 15 shows maps of the p-values on the − log10 scale under the Gaussian distribution assumption. Some

of the most significant differences between boys and girls are presented as white in the plot. We can see that the
eigenvector test shows the largest area of differences between the two groups, highlighted in white. Figure 16
shows maps of the p-values in − log10 scale under the matrix-Gamma distribution assumption. We can see that
the eigenvalue test and full matrix test show similar size of highlighted area.

While the eigenvalue and full matrix tests in the matrix-Gamma case detect more voxels that are different
between the two groups, the eigenvector test in the matrix-Gamma case shows the same anatomical pattern as in
the Gaussian and log-normal cases. Therefore, the various modeling assumptions do not give contradictory results
in terms of the eigenvector test. Yet, the eigenvalue test in the matrix-Gamma case is sensitive to differences in
eigenvalues in the gray matter that are not picked up by the Gaussian model.

8. Summary and discussion

This paper has described inferences for the eigenstructure of the mean matrix of symmetric positive definite
matrix-variate data. We have studied an exponential family of positive definite symmetric matrices, including the
derivation of MLEs and LLR test statistics for the eigenstructure of the mean parameter M under the exponential
family assumption. These procedures were applied to both one-sample and two-sample problems. Through sim-
ulations and data analysis, we showed that the exponential family assumption could be appropriate to analyze the
matrix-variate data.

We defined an exponential family model for symmetric matrix-variate data to find a general way to make infer-
ences for the mean matrix. This model flexibly included both the spherical Gaussian and matrix-variate Gamma
distributions. The matrix-variate normal distribution with orthogonally invariant covariance (OI covariance) as
defined in [29] does not conform to this model because it requires another parameter τ in addition to the variance
parameter σ2, which affects the norm of the matrix Y − M, and therefore it cannot be written in the exponential
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family form we defined. Our research could be extended to find a more general form of distribution family that
handles this problem.

In the data analysis, we found that the sphericity of covariance matrices assumption was invalid. To handle
this in the Gaussian case, we used the approximation in [28] for the distribution of the LRT statistics assuming an
arbitrary covariance structure. The problem did not occur in the case of the matrix-Gamma distribution because
the covariance matrix depends on the mean matrix, which is arbitrary. However, the covariance cannot be specified
separately, as in the Gaussian case.

In the future, research could be extended to generalized linear models (GLMs) for matrix-variate data. In this
work, we focused on looking for differences in eigenvalues and eigenvectors between two or more groups under
the exponential family assumption. In a GLM formulation it could be assumed that each outcome of the dependent
variables Y is generated from a particular distribution in the exponential family with E(Y) = M = ψ−1(X, B), B is
an (unknown) coefficient matrix, X is a suitably defined independent variable matrix, and ψ−1 is a link function.
Such a GLM could be used to include covariates that can affect the eigenstructure of mean parameter.

Supplementary Material

The Online Supplement contains the proofs for all the theoretical results mentioned in this paper.
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