JOURNAL OF MULTIVARIATE ANALYSIS | 卷:143 |
Estimation of the inverse scatter matrix of an elliptically symmetric distribution | |
Article | |
Fourdrinier, Dominique1  Mezoued, Fatiha2  Wells, Martin T.3  | |
[1] Univ Rouen, Normandie Univ, LITIS, EA 4108, F-76801 St Etienne Du Rouvray, France | |
[2] Ecole Natl Super Stat & Econ Appl ENSSEA Ex INPS, Algiers, Algeria | |
[3] Cornell Univ, Dept Stat Sci, 1190 Comstock Hall, Ithaca, NY 14853 USA | |
关键词: Elliptically symmetric distributions; High-dimensional statistics; Moore-Penrose inverse; Inverse scatter matrix; Quadratic loss; Singular sample covariance matrix; Sample eigenvalues; Stein-Half identity; | |
DOI : 10.1016/j.jmva.2015.08.012 | |
来源: Elsevier | |
【 摘 要 】
We consider estimation of the inverse scatter matrices Sigma(-1) for high-dimensional elliptically symmetric distributions. In high-dimensional settings the sample covariance matrix S may be singular. Depending on the singularity of S. natural estimators of Sigma(-1) are of the form a S-1 or a S+ where a is a positive constant and S-1 and S+ are, respectively, the inverse and the Moore-Penrose inverse of S. We propose a unified estimation approach for these two cases and provide improved estimators under the quadratic loss tr((Sigma) over cap (-1) - Sigma(-1))(2). To this end, a new and general Stein-Haff identity is derived for the high-dimensional elliptically symmetric distribution setting. (C) 2015 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmva_2015_08_012.pdf | 502KB | download |