期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:143
Estimation of the inverse scatter matrix of an elliptically symmetric distribution
Article
Fourdrinier, Dominique1  Mezoued, Fatiha2  Wells, Martin T.3 
[1] Univ Rouen, Normandie Univ, LITIS, EA 4108, F-76801 St Etienne Du Rouvray, France
[2] Ecole Natl Super Stat & Econ Appl ENSSEA Ex INPS, Algiers, Algeria
[3] Cornell Univ, Dept Stat Sci, 1190 Comstock Hall, Ithaca, NY 14853 USA
关键词: Elliptically symmetric distributions;    High-dimensional statistics;    Moore-Penrose inverse;    Inverse scatter matrix;    Quadratic loss;    Singular sample covariance matrix;    Sample eigenvalues;    Stein-Half identity;   
DOI  :  10.1016/j.jmva.2015.08.012
来源: Elsevier
PDF
【 摘 要 】

We consider estimation of the inverse scatter matrices Sigma(-1) for high-dimensional elliptically symmetric distributions. In high-dimensional settings the sample covariance matrix S may be singular. Depending on the singularity of S. natural estimators of Sigma(-1) are of the form a S-1 or a S+ where a is a positive constant and S-1 and S+ are, respectively, the inverse and the Moore-Penrose inverse of S. We propose a unified estimation approach for these two cases and provide improved estimators under the quadratic loss tr((Sigma) over cap (-1) - Sigma(-1))(2). To this end, a new and general Stein-Haff identity is derived for the high-dimensional elliptically symmetric distribution setting. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2015_08_012.pdf 502KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次