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a b s t r a c t

We consider estimation of the inverse scatter matrices Σ−1 for high-dimensional ellipti-
cally symmetric distributions. In high-dimensional settings the sample covariance matrix
S may be singular. Depending on the singularity of S, natural estimators ofΣ−1 are of the
form a S−1 or a S+ where a is a positive constant and S−1 and S+ are, respectively, the in-
verse and the Moore–Penrose inverse of S. We propose a unified estimation approach for
these two cases and provide improved estimators under the quadratic loss tr(Σ̂−1

−Σ−1)2.
To this end, a new and general Stein–Haff identity is derived for the high-dimensional el-
liptically symmetric distribution setting.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The estimation of covariance and inverse covariance matrices in a high-dimensional framework has seen a surge of
interest in the past years. Of these, estimates of the inverse covariance matrix are required in many multivariate inference
procedures including the Fisher linear discriminant analysis, confidence intervals based on the Mahalanobis distance,
optimal portfolio selection, graphicalmodels, andweighted least squares estimator inmultivariate linear regressionmodels.
Estimation of the precision matrix in the classical multivariate setting has been studied by Efron and Morris [12], Haff [21],
Dey [9], Krishnamoorthy and Gupta [24], Dey et al. [10], Zhou et al. [43], and Tsukuma and Konno [42].

The natural estimator of the inverse covariance matrix, based on the sample covariance matrix, is well known to be
inadequate in the high-dimensional context. When the dimension is of the same order of the sample size the sample
covariance matrix becomes unstable and has large estimation error. It is also well known that the eigenvalues of sample
covariance matrix are over-dispersed, that is, the eigenvalues of sample covariance matrix are not good estimators of their
population counterpartMarčenko and Pastur [33]. Additionally, in the settingwhere the dimension of the sample covariance
matrix is larger than the sample size, the inverse of the sample covariancematrix does not exist. An estimator of the precision
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matrix for the multivariate normal distribution based on the Moore–Penrose generalized inverse of the sample covariance
matrixwas developed in Kubokawa and Srivastava [27]. Kubokawa and Inoue [25] consider general types of ridge estimators
for covariance and precision matrices, and derive asymptotic expansions of their risk functions. More generally, the idea to
correct (shrink) the eigenvalues of the sample covariance matrix is also found in previous work by Ledoit and Wolf [29],
El Karoui [14], Ledoit and Wolf [30] and Donoho [11]. The problem has been examined under many sparsity scenarios, for
example, zero elements of the matrix [2,13,38,6] or its inverse [34,20,37,28,7,36], bandedness [3,4] among others.

Most of the results for improved estimation for covariance and inverse covariance matrices have been developed in the
context of the multivariate normal distribution. In this article we consider a large subclass of the elliptically contoured
distributions. Let (X,U) = (X,U1, . . . ,Un) be n + 1 p-dimensional random vectors having an elliptically symmetric
distribution with joint density of the form

(x, u) → |Σ |
−(n+1)/2 f


(x − θ)⊤Σ−1(x − θ)+

n
i=1

u⊤

i Σ
−1ui


= |Σ |

−(n+1)/2 f

tr

Σ−1(x − θ)(x − θ)⊤ +Σ−1s


, (1.1)

where X and the Ui’s are p × 1 vectors, θ is a p × 1 unknown location vector, S = UU⊤ is a p × p matrix and Σ is a
p×p unknown scatter matrix proportional to the covariance matrix. In the following, Eθ,Σ will denote the expectation with
respect to the density in (1.1) and E∗

θ,Σ the expectation with respect to the density

(x, u) →
1
K

|Σ |
−(n+1)/2 F


tr

Σ−1(x − θ)(x − θ)⊤ +Σ−1s


, (1.2)

where

F(t) =
1
2


∞

t
f (u)du (1.3)

and

K =


Rp+k

|Σ |
−(n+1)/2 F


tr

Σ−1(x − θ)(x − θ)⊤ +Σ−1s


dx du (1.4)

is the normalizing constant which is assumed to be finite. Note that these two expectations are related since, for any
integrable function H(X,U), we have

K E∗

θ,Σ [H(X,U)] = Eθ,Σ [ϕθ,Σ (X,U)H(X,U)] (1.5)

where

ϕθ,Σ (X,U) =

F

(X − θ)⊤Σ−1(X − θ)+

n
i=1

U⊤

i Σ
−1Ui


f

(X − θ)⊤Σ−1(X − θ)+

n
i=1

U⊤

i Σ
−1Ui

 .
The general model in (1.1) has been considered by various authors, for more details, see Fourdrinier, Strawderman and

Wells [19] where the model is viewed as the canonical form of the general linear model. For more on elliptically symmetric
distributions and the various choices of f (·) in (1.1) see Bilodeau and Brenner [5] and Fang, Kotz, and Ng [15]. The class
in (1.1) contains models such as the multivariate normal, t-, and Kotz-type distributions. In the setting of the multivariate
normal distribution, since F = f , we have Eθ,Σ = E∗

θ,Σ . Improved estimation of the scatter matrix for elliptical distribution
models, from a decision theoretic point of view, has been considered by Fang and Li [16], Fang and Li [32], Leung and Ng [31],
and Tsukuma [41].

In this article, we consider estimation of the inverse scatter matrixΣ−1 in (1.1) under the quadratic loss

L(Σ̂−1,Σ−1) = tr

(Σ̂−1

−Σ−1)2

, (1.6)

where Σ̂−1 estimatesΣ−1 and tr(M) denotes the trace of a matrixM . By definition, the risk of Σ̂−1 is

R(Σ̂−1,Σ−1) = Eθ,Σ [L(Σ̂−1,Σ−1)]. (1.7)

When S is invertible (p ≤ n), the ‘‘usual’’ estimators are of the form a S−1 for some positive constant a. Tsukuma [41]
showed that there exists a∗ such that, a∗S−1 is unbiased where

a∗ = a0


2πp/2

Γ (p/2)


∞

0
rp−1 (−2 f ′(r2)) dr

−1

, (1.8)

where a0 = n − p − 1 and S = UU⊤. Note that for the normal distribution, a∗ = a0.
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When S is singular (that is, when p > n) the estimation ofΣ−1 ismore delicate. The reference estimators parallel the case
where S is invertible, however S−1 is replaced by S+ theMoore–Penrose inverse of S. Consequently, the usual estimators are
of the form a S+ for some positive constant a. Note that the choice of the constant a differs from the invertible case. Indeed,
for instance, Kubokawa and Srivastava [27] used a = p−n−3 when S is not invertible while, in the normal case, the choice
of a = n − p − 1 corresponds to an unbiased estimator of Σ−1, when S is invertible. In the setting of estimating Σ under
invariant loss, the results in Konno [23] suggest using a = 1/(n + p + 1).

In this article, we provide a unified approach of the settings where S is invertible and S is not invertible. To this end,
we use the common notation S+ for both inverses since the Moore–Penrose inverse of S equals the regular inverse in the
nonsingular setting. For a fixed positive constant a, we consider competitive inverse scatter matrix estimators to a S+ of the
form

Σ̂−1
G = a S+

+ S G(X, S), (1.9)

where G(X, S) is some p × pmatrix function. We develop conditions on the function G in order that Σ̂−1
G improves on a S+

under the loss (1.6) and risk (1.7). In particular, we find sufficient conditions on G(X, S) so that the risk difference between
a S+

+ S G(X, S) and a S+,

∆(G) = R(a S+
+ S G(X, S),Σ−1)− R(a S+,Σ−1)

= Eθ,Σ

tr

{S G(X, S)}2 + 2 a S+ S G(X, S)


− 2 Eθ,Σ


tr(Σ−1S G(X, S))


(1.10)

is non-positive.
For estimation of the inverse scatter matrix relative to the quadratic loss in (1.6), we can address the construction of

improved estimators for both the invertible and noninvertible cases in the unified framework. The paper is organized
as follows. Section 2 develops a novel general Stein–Haff type identity for elliptically symmetric distributions and gives
various forms of the unbiased estimate of the risk difference between a S+ and orthogonally invariant estimators of the
form of (1.9). Section 3 gives examples of the function G(X, S) in (1.9) related to Efron and Morris [12] type estimators that
lead to improved estimator of the inverse scatter matrix. Section 4 gives a number of examples of elliptically symmetric
distributions that extend the classical normal theory. Concluding remarks are given in Section 5. The principal technical
tools and proofs are given in the Appendix.

The following notationwill be used throughout. The real p-dimensional orthogonal group of real p×pmatrices is denoted
Op(R). The p-dimensionalWishart distributionwith n degrees of freedom and covariancematrixΣ is writtenWp(n,Σ). For
anymatrixM , vec(M) denotes the vectorization ofM and∇M is interpreted as thematrixwith components (∇M)ij = ∂/∂Mij.
The differential operator for a symmetric matrix S is DS =

 1
2 (1 + δij) (∇S)ij


and Haff differential operator is defined, for

any p × p matrix function of a symmetric matrix S, H(S), to be D∗

1/2(H(S)) = tr

DS H(S)


.

2. Orthogonally invariant estimators

To develop analytical dominance properties of the proposed estimators, we need to derive the so-called Stein–Haff
identity for the singular elliptically contoured distributions in (1.1). The Stein–Haff identity was derived by Stein [40] and
Haff [22] for the full rankWishart distribution and Kubokawa and Srivastava [27], Konno [23], and Chételat andWells [8] for
the singular Wishart distribution, respectively. A similar identity for the full rank elliptically symmetric distributions was
developed by Kubokawa and Srivastava [26]. The following Stein–Haff type identity, which is proved in Appendix A.2, is an
extension of a result in Konno [23] and Chételat andWells [8] to the case of elliptical distributions of the form of (1.1). Note
that a similar lemma has been provided in the elliptical case by Fourdrinier, Strawderman and Wells [18] through the Haff
differential operator, however they only considered the case where the matrix S is nonsingular.

Lemma 2.1. Let G(x, s) be a p × p matrix function such that, for any fixed x, G(x, s) is weakly differentiable in s and such that
Eθ,Σ

tr Σ−1S G(X, S)
 < ∞. We have

Eθ,Σ

tr

Σ−1S G(X, S)


= K E∗

θ,Σ


n tr (G(X, S))+ tr


U ∇U⊤ G⊤(X, S)


. (2.1)

Remark 2.1. By noticing that S = S S+ S, an equivalent expression for (2.1) is

Eθ,Σ

tr

Σ−1S G(X, S)


= K E∗

θ,Σ


n tr


S+ S G(X, S)


+ tr


U ∇U⊤


G⊤(X, S) S+ S


. (2.2)

An application of the extended Stein–Haff identity in Lemma 2.1, it is immediate to see that ∆(G) in (1.10) is given by
the following proposition.

Proposition 2.1. The risk difference in (1.10) is

∆(G) = Eθ,Σ

tr

{S G(X, S)}2 + 2 a S+ S G(X, S)


− 2 K E∗

θ,Σ


n tr (G(X, S))+ tr


U ∇U⊤ G⊤(X, S)


. (2.3)
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A drawback with the risk difference in (2.3) is its dependence with respect to both expectations Eθ,Σ and E∗

θ,Σ . This is
not an issue for the multivariate normal distribution since Eθ,Σ = E∗

θ,Σ . A remedy to this nonhomogeneity is to use (1.5) in
order to deal with a quantity expressed through the only expectation Eθ,Σ . Clearly, according to (1.5), we have

∆(G) = Eθ,Σ

tr

{S G(X, S)}2 + 2 a S+ S G(X, S)


− 2 Eθ,Σ


ϕθ,Σ (X,U)


n tr (G(X, S))+ tr


U ∇U⊤ G⊤(X, S)


. (2.4)

However the dependence of the integrand term in (2.4) on the unknown parameters θ and Σ through ϕθ,Σ (X,U) is still
problematic. This dependence can be managed if the density in (1.1) is such that the ratio F(t)/f (t) is bounded, in the
sense that an upper bound for the risk difference∆(G) can be found. Then, using this upper bound, sufficient conditions for
improvement of a S+

+ S G(X, S) over a S+ can be derived.
In Theorem 2.1 we will require that there exists a positive constant b such that

F(t)
f (t)

≤ b. (2.5)

The ratio f /F is refereed to as the reversed hazard rate. It is worth noticing that, when estimating a location parameter of a
spherically symmetric distribution, a typical class of densities is the one introduced by Berger [1] who assumes that there
exists a constant c > 0 such that

F(t)
f (t)

≥ c. (2.6)

Nevertheless, we will see in Section 3 that (2.6) is also an appropriate class of densities in the covariance and inverse scatter
matrix context. In Section 4 we give some examples of densities satisfying (2.5) and (2.6). Note that, for these examples, the
ratio F(t)/f (t) is nonincreasing and hence b = F(0)/f (0).

Here follows our first result of improvement of a S+
+ S G(X, S) over a S+.

Theorem 2.1. Consider a density as in (1.1) satisfying (2.5) and assume that |n − p| ≥ 3. Under the conditions

tr

(n − |n − p| + 3)G(X, S)+ U ∇U⊤ G⊤(X, S)


≥ 0 (2.7)

and

tr (G(X, S)) ≤ 0 (2.8)

the estimator a S+
+ S G(X, S) improves over a S+ if

tr

{S G(X, S)}2 + 2 (a S+ S − b (|n − p| − 3))G(X, S)


≤ 0. (2.9)

Proof. Subtracting and adding the term

|n − p| − 3


tr (G(X, S)), the risk difference in (2.4) can be written as

∆(G) = Eθ,Σ

tr

{S G(X, S)}2 + 2 a S+ S G(X, S)


− 2 Eθ,Σ


ϕθ,Σ (X,U)


n − |n − p| + 3


tr (G(X, S))+ tr


U ∇U⊤ G⊤(X, S)


− 2 Eθ,Σ


ϕθ,Σ (X,U)


|n − p| − 3


tr (G(X, S))


.

With this expression, successively using Condition (2.7) and Condition (2.5), Condition (2.8) and the fact that |n−p|−3 ≥ 0,
it is clear that∆(G) is bounded from above by

Eθ,Σ

tr

{S G(X, S)}2 + 2 (a S+ S − b (|n − p| − 3))G(X, S)


,

which is nonpositive if (2.9) holds. �

Note that the constant a in (2.9) is the factor multiplying the projector S+ S. It may be convenient that S+ S appears
homogeneously in the improvement conditions. This is specified in the remark below following the same lines in the
proof of Theorem 2.1 and using Identity (2.2) of Remark 2.1. Also note that the conditions for domination depends on the
underlying density in (1.1) through the constant b. Consequently, in the context of inverse scatter matrix estimation the
improvement is not robustwith respect to the class of elliptically symmetric distribution as in location parameter estimation
(see Fourdrinier, Strawderman and Wells [18]). This is not surprising since the constant for unbiasedness, a∗ in (1.8), also
depends on f .

Remark 2.2. Under the conditions

tr

(n − |n − p| + 3) S+ S G(X, S)+ U ∇U⊤


G⊤(X, S) S+ S


≥ 0 (2.10)
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and

tr

S+ S G(X, S)


≤ 0 (2.11)

the estimator a S+
+ S G(X, S) improves over a S+ as soon as the inequality

tr

{S G(X, S)}2 + 2 (a − b (|n − p| − 3)) S+ S G(X, S)


≤ 0 (2.12)

holds.

Theorem 2.1 is particularly appropriate to deal with orthogonally invariant estimators of the form

Σ̂−1
φ = H1 φ(L)H⊤

1 (2.13)

through the eigenvalue decomposition of S as

S = H1 L H⊤

1 (2.14)

where L = diag(l1, . . . , ln∧p)with

l1 > l2 > · · · > ln∧p, (2.15)

and where H1 is a matrix such that H⊤

1 H1 = In∧p. The dimensions of H1 are specified as follows: when p ≤ n, H1 is a p × p
orthogonal matrix (H⊤

1 H1 = Ip) while, when p > n, H1 is a p × n semi-orthogonal matrix (H⊤

1 H1 = In). In this last case,
it will be convenient to complete H1 by a p × (p − n) matrix H2 such that H = (H1 H2) is p × p orthogonal matrix (see
Appendix A.3). Note that, when p ≤ n, we will consider that H = H1.

The diagonal matrix φ(L) = diag(φ1(L), . . . , φn∧p(L)) in (2.13) is more conveniently expressed as

φk(L) =
δk(L)
lk

for k = 1, . . . , n ∧ p. (2.16)

We will assume that

δ1(L) ≥ δ2(L) ≥ · · · ≥ δn∧p(L) (2.17)

and are differentiable with

∂δk(L)
∂ lk

≥ 0 for k = 1, . . . , n ∧ p. (2.18)

Setting S G(X, S) = Σ̂−1
φ − a S+ (note that L = H⊤

1 S H1 and L−1
= H⊤

1 S+ H1), we have

S G(X, S) = H1 Ψ (L)H⊤

1 (2.19)

where Ψ (L) = diag(ψ1(L), . . . , ψn∧p(L))with

ψk(L) =
δk(L)− a

lk
for k = 1, . . . , n ∧ p. (2.20)

Hence

G(X, S) = H1 L−1 Ψ (L)H⊤

1 = H1 L−2 (δ(L)− a In∧p)H⊤

1 . (2.21)

In this context, we have the following result for the orthogonally invariant estimators Σ̂−1
φ in (2.13).

Corollary 2.1. Consider a density as in (1.1) satisfying (2.5) with |n − p| ≥ 3. Assume that Condition (2.17) and Condition
(2.18) are satisfied. Then Σ̂−1

φ in (2.13) improves over a S+ as soon as

2 b (|n − p| − 3)− a ≤ δk(L) ≤ a. (2.22)

Proof. First note that Condition (2.8) holds since, we have

tr (G(X, S)) =

n∧p
i=k

δk(L)− a
l2k

≤ 0

by (2.21) and the second inequality in (2.22). Also Corollary A in Appendix A.3 guarantees that Condition (2.7) is satisfied
under Conditions (2.17) and (2.18) and the second inequality in (2.22).
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Now, as we have

tr

{S G(X, S)}2 + 2 a S+ S G(X, S)


= tr


Σ̂−2
φ − a2 (S+)2


=

p
k=1

δ2k (L)− a2

l2k
,

the left hand-side of (2.9) is expressed as

tr

{S G(X, S)}2 + 2 [a − b (|n − p| + 3)]G(X, S)


=

p
k=1


δ2k (L)− a2

l2k
− 2 b (|n − p| + 3)

δk(L)− a
l2k



=

p
k=1

1
l2k
(δk(L)− a) (δk(L)+ a − 2 b (|n − p| + 3)) ,

which is nonpositive under Condition (2.22). �

As a first simple application of Corollary 2.1, consider Σ̂−1
φ = a1 S+, with a1 > 0, as an alternative estimator to a S+.

Here, as Φ(L) = a1 L−1, we have δ(L) = a1 In∧p (so that ψ(L) = (a1 − a)L−1). Corollary 2.1 guarantees that improvement
condition (2.22) of a1 S+ over a S+ is

2 b (|n − p| − 3)− a ≤ a1 ≤ a.

In the normal case (i.e. f (t) ∝ exp(t/2)) and when S is invertible (i.e. p ≤ n), the reference estimator is the unbiased
estimator a S+ with a = n − p − 1. As, in this context, F = f , and then Eθ,Σ = E∗

θ,Σ , we can take b = 1 so that Condition
(2.22) reduces to

n − p − 5 ≤ a1 ≤ n − p − 1.

This is Condition (i) in Theorem 2.1 of Tsukuma and Konno [42].
Note that a natural choice of a is a = b(|n − p| − 3) so that (2.22) holds with δ(L) = b(|n − p| − 3)In∧p. In the normal

setting with b = 1, this choice of a coincides with the one in Kubokawa and Srivastava [27].
Two additional examples that satisfy (2.22), which are generalizations of Remark 2.1 in Tsukuma and Konno [42], set

δAUi (L) = a − (2a − 2b(|n − p| − 3))(i − 1)/(n ∧ p − 1) and δi(L) = 2b(|n − p| − 3)− a + (2a − 2b(|n − p| − 3))li/li+1.

3. Efron–Morris type estimators

Theorem 2.1 is not well adapted to some orthogonally invariant estimators, for instance to Efron and Morris [12] type
estimators that are of the form a S+

+ β(t)/t S S+, where t = tr(S) and β is a nonnegative function. These estimators
correspond, in (2.16), to δk = a + lk β(t)/t , so that Condition (2.22) is not satisfied. Actually, Theorem 2.1 may not apply
to estimators which are not orthogonally invariant such as the following estimators which extend the ones considered by
Tsukuma and Konno [42]. Let Q be a p × q matrix of constants with rank rk(Q ) = q and let G(X,U) = β(t)/t S+ Q0 where
β is a differentiable real valued function, t = tr(S) and Q0 = Q (Q⊤ Q )−1 Q⊤. We will consider conditions under which
a S+

+β(t)/t S S+ Q0 improves over a S+. In particular, we will assume that β is nonnegative and nondecreasing. Note that,
in the Gaussian case and when p ≤ n, Tsukuma and Konno [42] give similar improvement conditions of estimators of the
form a S−1

+ β(t)/t Q0 over (n − p − 1) S−1.
For such an example, it is more appropriate to use the Haff differential operator. Thanks to the identity in (2.2) of

Remark 2.1 and Lemma A.1, the risk difference in (2.4) can be written as

∆(G) = Eθ,Σ

tr

{S G(X, S)}2 + 2 a S+ S G(X, S)


− 2 Eθ,Σ


ϕθ,Σ (X,U) {a0 tr


S+ S G(X, S)


+ 2D∗

1/2(S G(X, S))}


= Eθ,Σ

tr

{S G(X, S)}2 − 2 (a0 ϕθ,Σ (X,U)− a) S+ S G(X, S)


− 4 Eθ,Σ


ϕθ,Σ (X,U)D∗

1/2(S G(X, S))

. (3.1)

Now for the Efron–Morris type estimator we have

S G(X, S) =
β(t)
t

S S+ Q0. (3.2)

Note that, as S S+ and Q0 are projectors, their product S S+ Q0 is a projector as well so that

{S G(X, S)}2 =
β2(t)
t2

S S+ Q0 (3.3)

and

S+ S G(X, S) =
β(t)
t

S+ S S+ Q0 =
β(t)
t

S+ Q0. (3.4)
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To deal with the term D∗

1/2(S G(X, S)), it is convenient to recall that

D∗

1/2(S G(X, S)) = tr

DS (S G(X, S))


. (3.5)

We have, according to (3.2) and using (A.2) in Appendix A.1,

DS S G(X, S) = DS
β(t)
t

S S+ Q0

=


DS

β(t)
t

Ip


S S+ Q0 +


β(t)
t

Ip DS

⊤

S S+ Q0

=


β(t)
t

′

S S+ Q0 +
β(t)
t

DS S S+ Q0

=


β(t)
t

′

S S+ Q0 +
β(t)
t


DS S S+


Q0 +


S S+ DS

⊤ Q0

=


β(t)
t

′

S S+ Q0 +
β(t)
t


DS S S+


Q0 (3.6)

since

S S+ DS

⊤ is a p × p matrix with elements which are linear combinations of ∂/∂Sij and Q0 does not depend on S.
Hence, according to (3.5) and (3.6), it follows that

D∗

1/2(S G(X, S)) =


β ′(t)
t

−
β(t)
t2


tr

Q0 S S+


+
β(t)
t

tr

Q0 DS S S+


, (3.7)

upon expanding (β(t)/t)′. Now substituting in (3.1) the terms in (3.3), (3.4) and (3.7) give

∆(G) = Eθ,Σ


β2(t)
t2

tr

S S+ Q0


− 2


a0 ϕθ,Σ (X,U)− a

 β(t)
t

tr

S+ Q0


− 4ϕθ,Σ (X,U)


β ′(t)
t

−
β(t)
t2


tr

Q0 S S+


− 4ϕθ,Σ (X,U)

β(t)
t

tr

Q0 DS S S+


. (3.8)

At this stage, an upper bound of the left hand-side of (3.8) can be developed. Indeed note that

tr

{S G(X, S)}2


=
β2(t)
t2

tr

S S+ Q0 S S+ Q0


=
β2(t)
t2

tr

S S+ Q0


=
β2(t)
t2

rk(S S+ Q0)

≤
β2(t)
t2

min(rk(S S+), rk(Q0))

≤
β2(t)
t2

q, (3.9)

since

rk(Q0) = tr(Q0) = tr(Q⊤ Q (Q⊤ Q )−1) = tr(Iq) = q. (3.10)

Hence, assuming thatβ(t) is a nondecreasing function of t and using Conditions (2.5) and (3.9), it is clear from the expression
in (3.8) that

∆(G) ≤ Eθ,Σ


β2(t)
t2

q − 2

a0 ϕθ,Σ (X,U)− a

 β(t)
t

tr

S+ Q0


+ 4 b

β(t)
t2

q − 4ϕθ,Σ (X,U)
β(t)
t

tr

Q0 DS S S+


. (3.11)

In the following results, based on (3.11), we distinguish the cases where S is invertible and where S is noninvertible. If S
is invertible then p ≤ n, S+

= S−1 andDS S S+
= DS S S−1

= DS Ip = 0 so that the last term on the right hand-side of (3.11)
vanishes. This is in contrast with the case where S is not invertible since, in that situation, p > n, a0 < 0 and DS S S+

≠ 0.
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Theorem 3.1. Consider a density as in (1.1) satisfying (2.5) and (2.6), that is, 0 < c ≤ F(t)/f (t) ≤ b. Assume that S is
invertible and p < n − 3. Assume also that β(t) is a differentiable nondecreasing function of t = tr(S) and a0 = n − p − 1.
Then a S+

+ β(t)/t S S+ Q0 improves over a S+ provided that

0 < a < a0 c − 2 b (3.12)

and

0 < β(t) < 2 (a0 c − 2 b). (3.13)

Proof. By the assumption, a0 > 0, it follows from (3.11) that, according to (2.6),

∆(G) ≤ Eθ,Σ


β2(t)
t2

q − 2

a0 c − a

 β(t)
t

tr

S−1 Q0


+ 4 b

β(t)
t2

q

. (3.14)

Now Inequality (A.74) states here that

tr(S−1 Q0) ≥
tr(Q0)

tr(S)
=

q
t
,

since H1 is a semi-orthogonal matrix. Therefore, as a < a0 c according to (3.12), we have

−2

a0 c − a

 β(t)
t

tr

S−1 Q0


≤ −2


a0 c − a


q
β(t)
t2

and hence it follows from (3.14) that

∆(G) ≤ Eθ,Σ


β(t)
t2

q

β(t)− 2


a0 c − a − 2 b


. (3.15)

Consequently, according to (3.13),∆(G) ≤ 0. �

Theorem 3.2. Consider the density in (1.1) satisfying (2.5) and (2.6). Assume that S is noninvertible and that

p ≥ 3 n
n

n − 2
with n ≥ 3, (3.16)

b
c
<

2 p − 4 n + 1
p (1 + 2/n)− (n − 1)

(3.17)

and

q >
3 n + (b/c − 1)(p − n − 1)

1 − (2/n) (b/c)
. (3.18)

Assume also that β(t) is a differentiable nondecreasing function of t. Then the estimator a S+
+ β(t)/t S S+ Q0 improves over

a S+ provided that

0 < a ≤ [(b − c) (n − p − 1)+ c (q − 3 n)]
n
q

− 2 b (3.19)

and

0 < β(t) < [(b − c) (n − p − 1)+ c (q − 3 n)]
n
q

− 2 b − a. (3.20)

Proof. First note that Condition (3.18) is equivalent to the positivity of the upper bound of a in (3.19). Aswe have p ≥ q, note
also that Condition (3.17) is equivalent to the fact that p is greater than the lower bound for q in (3.18). Finally, as b/c ≥ 1,
note that Condition (3.16) is equivalent to the fact that the upper bound for b/c in (3.17) is greater than or equal to 1.

Since it can be checked from (3.18) that 2 n − q < 0, it results from Lemma A.2 that tr

Q0 DS S S+


≥ 0 for p ≥ 2 n − 1,

which is guaranteed by (3.16). Hence, from (3.11), a first new upper bound for∆(G) is given by

∆(G) ≤ Eθ,Σ

β2(t)
t2

q − 2

a0 b − a


β(t)
t tr


S+ Q0


+ 4 b β(t)

t2
q − 4 c β(t)

t tr

Q0 DS S S+


. (3.21)

Then, from the first inequality in (A.19), it follows from (3.21) that another upper bound for∆(G) is

∆(G) ≤ Eθ,Σ


β2(t)
t2

q + 4 b
β(t)
t2

q − 2 A
β(t)
t

tr

S+ Q0


− 2 B

β(t)
t

tr

S+

, (3.22)
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where A = a0 b − a + c (p + 1 − 2 n) = (b − c) (n − p − 1)− c n − a and B = q − 2 n. As A < 0 and tr

S+ Q0


≤ tr


S+

,

(3.22) implies that

∆(G) ≤ Eθ,Σ


β2(t)
t2

q + 4 b
β(t)
t2

q − 2 (A + c B)
β(t)
t

tr

S+

. (3.23)

Now, through straightforward calculations, we have

A + c B = (b − c) (n − p − 1)+ c (q − 3 n) ≥ 0 (3.24)

as soon as Condition (3.19) is satisfied. Then, since (A.73) in Lemma A.4 guarantees that tr

S+


≥ n/t , we can derive from
(3.23) and (3.24) the following upper bound for∆(G):

∆(G) ≤ Eθ,Σ


β2(t)
t2

q + 4 b
β(t)
t2

q − 2 (A + c B) n
β(t)
t2


. (3.25)

According to (3.24), the integrand in (3.25) can be written as

β(t)
t2

q

β(t)− 2 [(b − c) (n − p − 1)+ c (q − 3 n)]

n
q

− 2 b − a

,

which is negative if Conditions (3.19) and (3.20) are satisfied. Then the risk difference in (3.25) is nonpositive, so that the
estimator a S+

+ β(t)/t S S+ Q0 improves over a S+. �

4. Elliptically symmetric distribution examples

In Fourdrinier, Mezoued and Strawderman [17], several examples of density in the Berger class (Condition (2.6)) are
provided. Note that Condition (2.5) may be satisfied or not. Note also that, for these examples, F(t)/f (t) is monotone in t ,
either nondecreasing or nonincreasing. This ratio is typically nondecreasing when the density in (1.1) is a variance mixture
of normals (in which case c = F(0)/f (0) and b = limt→∞ F(t)/f (t)).

For each of the estimators discussed above, conditions on a and β(t) need to be satisfied in order to attain improvement.
The optimal a can be derived for a particular elliptically symmetric distribution as in Tsukuma [41], however, it requires
numerical work to calculate since there is no closed form expression. The choice of β(t) is more complicated and can be
taken to be a constant as in the examples considered in Efron and Morris [12] and Tsukuma and Konno [42].

Example 4.1. Let the density in (1.1) be a variance mixture of normal distributions where the mixing variable V has density
g with respect to the Lebesgue measure, that is, for any t ≥ 0,

f (t) ∝


∞

0
v−p/2 exp


−t
2 v


g(v) dv.

We have

F(t)
f (t)

=


∞

0 v−p/2+1 exp


−t
2 v


g(v) dv

∞

0 v−p/2 exp


−t
2 v


g(v) dv

= Et [V ] (4.1)

where Et denotes the expectation with respect to a density proportional to v → v−p/2 exp(−t/2v) g(v). As this density has
increasing monotone likelihood ratio in t , Et [V ] is nondecreasing in t . Then, denoting by E the expectation with respect to g ,

c =
F(0)
f (0)

=


∞

0 v−p/2+1 g(v) dv
∞

0 v−p/2 g(v) dv
=

E[V−p/2+1
]

E[V−p/2]
> 0,

provided that E[V−p/2
] < ∞.

A typical example of variance mixture of normals is a multivariate t-distribution with k degrees of freedom for which
g(v) ∝ v−k/2−1 exp(−k/2v). Through the change of variable v = t/u in the integrals in (4.1), it is easily checked that

F(t)
f (t)

= t


∞

0 u(p+k)/2−2 exp

−

u
2


1 +

k
t


du

∞

0 u(p+k)/2−1 exp

−

u
2


1 +

k
t


du
,

so that b = limt→∞ F(t)/f (t) = ∞. Hence Theorems 2.1, 3.1 and 3.2 cannot apply to the t-distributions. However, for a
truncated mixing density g 1[0,A] with A > 0 (normalized by

 A
0 g(v) dv so that it is a real pdf), it is clear from (4.1) that

b = A and is finite. Hence the above theorems apply for such truncated versions and, in particular, for the truncated t .
Note that the well known Kotz’ density corresponding to f (t) ∝ tq exp(−t/2) is a mixture of normals when the param-

eter q is negative (but it is not when q > 0) with mixing density having a compact support, since it is a beta distribution
with parameter p/2 + q and −q, provided q > −p/2.
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We give below a few examples where F(t)/f (t) is nonincreasing, and hence for which b = F(0)/f (0) and c =

limt→∞ F(t)/f (t).

Example 4.2. Let

f (t) ∝
exp (−βt − γ )

(1 + exp (−β t − γ ))2

where β > 0 and γ > 0. For that function we have

c =
1
2β

and b =
1 + e−γ

2β
.

Example 4.3. Let

f (t) ∝
1

cosh(β t + γ )

where β > 0 and γ > 0. For that function we have

c =
1
2β

and b =
1
β

arctan(e−γ ) cosh(γ ).

Example 4.4. Let

f (t) ∝ (t + A) exp


−
t
2


with A > 2. For that function we have

c = 1 and b = 1 +
2
A
.

Now we provide here a last example (which is not in Fourdrinier, Mezoued and Strawderman [17]) for which the ratio
F(t)/f (t) is not monotone.

Example 4.5. Let

f (t) ∝
1

t2 − 2 t + 2
exp


−

1
2
arctan(t − 1)


1[0,A]

with A > 1. It can be checked that
F(t)
f (t)

= t2 − 2 t + 2

which is nonincreasing on the interval [0, 1] and nondecreasing on [1, A]. Then it can be seen that c ≤ F(t)/f (t) ≤ b with
c = F(1)/f (1) = 1 and b = max


2, F(A)/f (A)


.

5. Concluding remarks

In this paper, we have considered estimation of the inverse scatter matrix under quadratic loss and have derived risk
expressions under a wide class of elliptically symmetric distribution. We proposed a unified approach that can deal with
both singular andnonsingular S. As a by product of our derivations,wedeveloped anewandmore general Stein–Haff identity
for the high-dimensional elliptically symmetric distribution setting.

Kubokawa and Inoue [25] consider general types of ridge estimators of the precision matrix and derive asymptotic
expansions of their risk functions. They also suggest ridge function examples so that the second order terms of risks are
smaller than those of standard estimators. Unfortunately, the type of ridge estimators they examined donot fall into our class
of estimators, namely, estimators of the forms a S+

+ S G(X, S) or H1 Ψ (L)H⊤

1 . This seems to be the reason that Kubokawa
and Inoue need to use asymptotic arguments rather than the exact forms as developed here. We plan to examine the
numerical performance of our proposed estimators, for various elliptically symmetric distributions, with other precision
matrix estimators. A comparison with ridge-type estimators would be particularly informative. As pointed out in Section 4,
in order to develop these comparisons some further numerical work is needed to select optimal value of the multiplicative
constant a, for a particular elliptically symmetric distribution.

Our new proof techniques and Stein–Haff identity for the singular elliptically contoured distributions in (1.1) can be
applied to a number of setting. First, the results of Konno [23] for estimating large covariance matrices of multivariate
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normal distributions when the dimension of the variables is larger than the number of samples can be extended to the
case of elliptically symmetric distribution. Next the analysis of the high dimensional James–Stein estimator in Chételat and
Wells [8] can also be adapted to elliptically contoured distributions. The key technical tool in both of these extensions will
be an application of Lemma 2.1.

Another direction would be to consider the problem of the estimation of discriminant coefficients, which arises in linear
discriminant analysis when Fisher’s linear discriminant function is viewed as the posterior log-odds under the assumption
that two classes differ inmean but have a common scatter matrix. The improved inverse scatter matrix estimates developed
in this article will likely give rise to improved discriminant coefficients under the quadratic loss function for the elliptically
symmetric distributions in the case where the number of the variables is larger than the number of samples. Results on the
improved discriminant coefficient estimation are given in Tsukuma and Konno [42] for the normal distribution when the
number of the variables is smaller than the number of samples.
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Appendix

A.1. Differential expressions I

Let U and T be p × p matrices, the elements of which being functions of S = (Sij) and let D̃S be a p × p matrix, the
elements of which being linear combinations of ∂/∂Sij. Tsukuma and Konno [42] recall the following result from Haff:

D̃S U T = {D̃S U} T +

U⊤ D̃⊤

S

⊤
T . (A.1)

In the particular case where D̃S = DS with (DS)ij = 1/2 (1 + δij) ∂/∂Sij, we have D⊤

S = DS so that, if U is symmetric,

DS U T = {DS U} T +

U DS

⊤
T . (A.2)

Note that

DS S =
p + 1
2

Ip (A.3)

since 
DS S


ik =

p
j=1

1
2
(1 + δij)

∂Sjk
∂Sij

=
∂Sik
∂Sii

+
1
2

p
j≠i

∂Sjk
∂Sij

= δki +
1
2

p
j≠i

δki

= δki +
p − 1
2

δki

=
p + 1
2

δki.

Hence, as S is symmetric, applying (A.2) with U = S and T = S+ gives

DS S S+
=

DS S


S+

+

S DS

⊤
S+

=
p + 1
2

S+
+

S DS

⊤
S+, (A.4)

thanks to (A.3).

A.2. Stein–Haff lemma type and differential operators

We give a concise proof of Lemma 2.1 in this subappendix. Note that a similar lemma has been provided in the elliptical
case by Fourdrinier, Strawderman and Wells [18] through the Haff operator. However two features are different: they only
considered the case where thematrix S is invertible and presented a lengthy proof. Nevertheless, we follow their lines being
able to considerably shorten their proof. Also note that the invertibility of S does not play any role in the proof below.
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Proof of Lemma 2.1. As U = (U1, . . . ,Un) and S = UU⊤, we have

tr

Σ−1S G(X, S)


= tr


G(X, S)Σ−1S


= tr


G(X, S)Σ−1

n
i=1

Ui U⊤

i



=

n
i=1

tr

U⊤

i G(X, S)Σ−1 Ui


=

n
i=1

U⊤

i G(X, S)Σ−1 Ui. (A.5)

Now, using the argument in Lemma 1(i) of Fourdrinier, Strawderman and Wells [18], it follows from (A.5) that

Eθ,Σ

tr

Σ−1S G(X, S)


= k

n
i=1

E∗

θ,Σ


divUi(G

⊤(X, S)Ui)


= k E∗

θ,Σ [A1 + A2] , (A.6)

where

A1 =

n
i=1

p
j=1

p
m=1

∂Umi

∂Uji
G⊤

jm

=

n
i=1

p
j=1

p
m=1

δjm G⊤

jm(X, S)

= n
p

j=1

G⊤

jj (X, S)

= n tr(G(X, S)) (A.7)

and

A2 =

n
i=1

p
j=1

p
m=1

Umi
∂G⊤

jm(X, S)

∂Uji

=

n
i=1

p
m=1

Umi

p
j=1

∂G⊤

jm(X, S)

∂Uji

=

n
i=1

p
m=1

Umi(∇U⊤G⊤(X, S))im

=

p
m=1

(U∇U⊤G⊤(X, S))mm

= tr(U ∇U⊤ G⊤(X, S)). (A.8)

Finally, combining (A.6)–(A.8), we obtain the desired result. �

To deal with the term tr(U ∇U⊤ G⊤(X, S)) it may be convenient to use the Haff operator and the following lemma, where
we give a link between the differential expressions D∗

1/2S G(X, S) and tr

U ∇U⊤ G⊤(X, S)


.

Lemma A.1. For any p × p matrix function G(x, s) differentiable with respect to s for any x,

2D∗

1/2


S G(X, S)


= (p + 1) tr (G(X, S))+ tr


U ∇U⊤ G⊤(X, S)


. (A.9)

Proof. Firstly, we express tr

U ∇U⊤ G⊤(X, S)


in terms of S, we have

(U ∇U⊤ G⊤(X, S))ii =

n
j=1

p
k=1

Uij (∇U⊤)jk (G⊤(X, S))ki

=

n
j=1

p
k=1

Uij
∂(G⊤(X, S))ki

∂Ukj
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=

n
j=1

p
k=1

Uij

p
r≤l

∂(G⊤(X, S))ki
∂Srl

∂Srl
∂Ukj

=

n
j=1

p
k=1

Uij

p
r≤l

∂(G⊤(X, S))ki
∂Srl

(δrkUlj + δlkUrj), (A.10)

since S = U U⊤. From (A.10) we can write

(U ∇U⊤ G⊤(X, S))ii = A + B + C (A.11)

where

A =

n
j=1

p
k=1

Uij

p
r=l

2 δrkUrj
∂(G⊤(X, S))ki

∂Srr

= 2
n

j=1

p
k=1

Uij Ukj
∂(G⊤(X, S))ki

∂Skk

= 2
p

k=1

Sik
∂(G⊤(X, S))ki

∂Skk
, (A.12)

B =

n
j=1

Uij

p
k<l

Ulj
∂(G⊤(X, S))ki

∂Skl
,

and

C =

n
j=1

Uij

p
k>r

Urj
∂(G⊤(X, S))ki

∂Srk
.

Now it is clear that

B + C =

n
j=1

Uij

p
k≠l

Ulj
∂(G⊤(X, S))ki

∂Skl

=

p
k≠l

Slj
∂(G⊤(X, S))ki

∂Skl
. (A.13)

Then, substituting (A.12) and (A.13) in (A.11), it follows that

tr

U ∇U⊤ G⊤(X, S)


= 2

p
i=1


p

k=1

Sik
∂(G⊤(X, S))ki

∂Skk
+

1
2

p
k≠l

Slj
∂(G⊤(X, S))ki

∂Skl


. (A.14)

Secondly, we have

2D∗

1/2


S G(X, S)


= 2

p
i=1

∂(S G(X, S))ii
∂Sii

+


i≠j

∂(S G(X, S))ij
∂Sij

= 2
p

i=1


Gii(X, S)+

p
k=1

Sik
∂(G⊤(X, S))ki

∂Sii


+

p
i≠j


Gjj(X, S)+

p
k=l

Sik
∂(G⊤(X, S))kj

∂Sij



= (p + 1) tr(G(X, S))+ 2
p

k=1


p

i=1

Sik
∂(G⊤(X, S))ki

∂Sii
+

1
2

p
i≠j

Sik
∂(G⊤(X, S))kj

∂Sij


= (p + 1) tr


G(X, S)


+ tr


U ∇U⊤ G⊤(X, S)


, (A.15)

according to (A.14) for the last equality in (A.15). �
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We now deal with the term tr

Q0 DS S S+


considered in Section 3. As partial derivatives with respect to the Sij are

involved, recall (see, for instance, Chételat and Wells [8]) that

∂S+

∂Sij
= −S+

∂S
∂Sij

S+
+ (Ip − S S+)

∂S
∂Sij

S+ S+
+ S+ S+

∂S
∂Sij

(Ip − S S+). (A.16)

As a preliminary result note that for any p × p matrices A, B and C , we have

p
l=1

p
i=1

Cli

p
j=1

1
2
(1 + δij)


A
∂S
∂Sij

B


jl
=

1
2
tr

diag(A) diag(B C)


+

1
2
tr(A) tr(B C), (A.17)

where, for any p × p matrix M , diag(M) is the diagonal matrix formed with the diagonal elements of M . Indeed, denoting
by τ the left hand-side of (A.17), this term can be expanded as

τ =

p
l=1

p
i=1

Cli

p
j=1

1
2
(1 + δij)

p
q=1

Ajq

p
k=1

∂Sqk
∂Sij

Bkl

=

p
l=1

p
i=1

Cli


p

j=1

1
2
(1 + δij) Ajj


Bil,

since
∂Sqk
∂Sij

= δqj δki.

Then, expressing the sum with respect to j, gives

τ =

p
l=1

p
i=1

Cli
1
2


Aii + tr(A)


Bil

=
1
2

p
i=1

Aii

p
l=1

Cli Bil +
1
2
tr(A)

p
i=1

p
l=1

Cli Bil

=
1
2

p
i=1

Aii (B C)ii +
1
2
tr(A)

p
i=1

(B C)ii,

which is (A.17).
From the above, the following lemma can be derived.

Lemma A.2. For Q0 as in the first paragraph of Section 3, we have

tr

Q0 DS S S+


=

p + 1 − (n ∧ p)
2

tr

Q0 S+


+

1
2
tr

diag(S+) diag(Q0)


+

q
2
tr

S+


−
1
2
tr

diag(S+) diag(Q0 S S+)


−

1
2
tr

S+

tr

Q0 S S+


−

1
2
tr

diag(S S+) diag(Q0 S+)


. (A.18)

Furthermore, if S is noninvertible, we have

tr

Q0 DS S S+


≥ 0 (A.19)

as soon as

p ≥ q ≥ 2 n. (A.20)

Proof. First note that when S is invertible the left hand-side of (A.18) equals 0, this agrees with the fact that the right hand-
side of (A.18) does not depend on S.

According to (A.4), we have

tr

Q0 DS S S+


=

p + 1
2

tr

Q0 S+


+ tr


Q0 {S D}

⊤ S+

, (A.21)
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the second term of (A.21) being expressed as

tr

Q0 {S D}

⊤ S+


=

p
l=1

p
i=1

(Q0)li({S D}
⊤ S+)il

=

p
l=1

p
i=1

(Q0)li

p
j=1

1
2
(1 + δij)


S
∂S+

∂Sij


jl
. (A.22)

Applying (A.16) it follows that

S
∂S+

∂Sij
= −S S+

∂S
∂Sij

S+
+ (S − S S S+)

∂S
∂Sij

S+ S+
+ S S+ S+

∂S
∂Sij

(Ip − S S+)

= −S S+
∂S
∂Sij

S+
+ S+

∂S
∂Sij

− S+
∂S
∂Sij

S S+, (A.23)

since S S S+
= S S+ S = S and S S+ S+

= S+ S S+
= S+. Hence, from (A.21) and (A.23),

tr

Q0 {S D}

⊤ S+


=

p
l=1

p
i=1

(Q0)li

p
j=1

1
2
(1 + δij)


−S S+

∂S
∂Sij

S+
+ S+

∂S
∂Sij

− S+
∂S
∂Sij

S S+


jl

= −
1
2
tr

diag(S S+) diag(Q0 S+)


−

1
2
tr

S S+


tr

Q0 S+


+

1
2
tr

diag(S+) diag(Q0)


+

1
2
tr

S+

tr (Q0)

−
1
2
tr

diag(S S+) diag(Q0 S+)


−

1
2
tr

S S+


tr

Q0 S+


(A.24)

by applying (A.17) with C = Q0 and, successively, A = −S S+, A = S+, A = −S+, and B = S+, B = Ip, B = S S+. Recalling
that tr (Q0) = q and tr


S S+


= n ∧ p and gathering (A.21) and (A.24) give (A.18).

As for Inequality (A.19), note that

tr (diag(A) diag(B)) ≤ tr(A) tr(B), (A.25)

for any positive semidefinite matrices A and B. As S is noninvertible, (A.18) becomes

tr

Q0 DS S S+


=

p + 1 − n
2

tr

Q0 S+


+

1
2
tr

diag(S+) diag(Q0)


+

q
2
tr

S+


−
1
2
tr

diag(S+) diag(Q0 S S+)


−

1
2
tr

S+

tr

Q0 S S+


−

1
2
tr

diag(S S+) diag(Q0 S+)


(A.26)

and applying (A.25) in (A.26) successively with A = S+, B = Q0 S S+ and A = S S+, B = Q0 S+ gives

tr

Q0 DS S S+


≥

p + 1 − n
2

tr

Q0 S+


+

1
2
tr

diag(S+) diag(Q0)


+

q
2
tr

S+


− tr

S+

tr

Q0 S S+


−

1
2
tr

S S+


tr

Q0 S+


≥


p + 1
2

− n

tr

Q0 S+


+

1
2
tr

diag(S+) diag(Q0)


+

 q
2

− n

tr

S+

, (A.27)

gathering the common terms and using the fact that

tr

Q0 S S+


= rk


Q0 S S+


≤ min(q, n) ≤ n.

Finally, it is clear fromCondition (A.20) that the first term and the third term of the right hand-side of (A.27) are nonnegative.
As the second term is nonnegative as well, we obtain Inequality (A.19). �

A.3. Differential expressions II

In this subappendix, we present a unified approach to calculus on eigenstructure for singular and nonsingular sample
scatter matrices necessary to develop Stein–Haff identities for the elliptically symmetric distributions. Results similar to
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these are given in Konno [23]. We treat both the singular and nonsingular cases in a unified manner as well as fill-in many
of the analytic details of the delicate proofs.

Recall, from (2.14) in Section 2, that the sample covariance matrix S has the eigenvalue decomposition S = H1 L H⊤

1
where H1 is a matrix such that H⊤

1 H1 = In∧p. When p ≤ n, H1 is a p×pmatrix in Op(R) (i.e. H⊤

1 H1 = Ip) while, when p > n,
H1 is a p × n semi-orthogonal matrix (i.e. H⊤

1 H1 = In). In the case where p > n, we complete the semi-orthogonal matrix
H1 by a p × (p − n)matrix H2 such that H = (H1 H2) is a p × p matrix in Op(R) (see Srivastava [39]). Then, setting

L̃ =


L 0n×(p−n)
0(p−n)×n 0(p−n)×(p−n)


,

we have

H L̃ H⊤
= H1 L H⊤

1 = S. (A.28)
Note that, by orthogonality of H , it follows that

Ip = HH⊤
= (H1 H2)


H⊤

1

H⊤

2


= H1H⊤

1 + H2H⊤

2

which implies

H2H⊤

2 = Ip − H1H⊤

1 . (A.29)

In the case where p ≤ n, there is no matrix H2 to consider so that we set H = H1 and we have L̃ = L.
Note also that, expressing the (i, j) term of the matrices, for any p × pmatrix A, we have

(A L̃)ij =

Aij lj if j = 1, . . . , n ∧ p
0 if p > n and j = n + 1, . . . , p
0 if i, j = 1, . . . , p and i ≠ j.

(A.30)

and

(L̃ A)ij =

li Aij if i = 1, . . . , n ∧ p
0 if p > n and i = n + 1, . . . , p
0 if i, j = 1, . . . , p and i ≠ j.

(A.31)

Furthermore,

(H⊤ AH)ij =


(H⊤

1 AH1)ij if i, j = 1, . . . , n ∧ p

(H⊤

2 AH1)ij if p > n, i = n + 1, . . . , p and j = 1, . . . , n

(H⊤

1 AH2)ij if p > n, j = n + 1, . . . , p and i = 1, . . . , n.

(A.32)

Finally upon differentiating and by orthogonality of H , we have
0 = d(Ip) = d(H⊤H) = d(H⊤)H + H⊤d(H) = 0

so that

d(H⊤)H = −H⊤d(H). (A.33)
Recall that, for two p × n matrices A and B such that B is a differentiable function of A, d(B) is the exterior product of the
elements of B so that, dAij being the dual basis of ∂/∂Aij, we have

d(B)kl =

p
i=1

n
j=1

∂Bkl

∂Aij
dAij, (A.34)

for 1 ≤ k ≤ p and 1 ≤ l ≤ n (see Muirhead [35, Chapter 2]).
In the following lemma, we give expressions of the generic elements of the matrix H⊤d(H) in (A.33).

Lemma A.3. Let i, j = 1, . . . , p. For i = j, we have

(H⊤d(H))ii = 0. (A.35)

For i ≠ j, we have that (H⊤d(H))ij equals

1
lj − li


H⊤

1 {d(U)U⊤
+ U d(U⊤)}H1


ij if i, j = 1, . . . , n ∧ p

1
lj


H⊤

2 {d(U)U⊤
+ U d(U⊤)}H1


ij if p > n, i = n + 1, . . . , p and j = 1, . . . , n

1
li


H⊤

1 {d(U)U⊤
+ U d(U⊤)}H2


ij if p > n, j = n + 1, . . . , p and i = 1, . . . , n.

(A.36)
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Proof. First, as the diagonal elements of a matrix are those of its transpose, for any i = 1, . . . , p, we have
H⊤ d(H)


ii =


{H⊤ d(H)}⊤


ii =


d(H⊤)H


ii = −


H⊤ d(H)


ii,

according to (A.33). Hence (A.35) holds, which is the first result of Lemma A.3.
Now, thanks to (A.28), we have

d(S) = d(H) L̃ H⊤
+ Hd(L̃)H⊤

+ H L̃ d(H⊤). (A.37)

Then, multiplying respectively by H⊤ and by H the left hand-side and the right hand-side of (A.37), we obtain

H⊤ d(S)H = H⊤ d(H) L̃ + d(L̃)+ L̃ d(H⊤)H

= H⊤ d(H) L̃ + d(L̃)− L̃ H⊤ d(H), (A.38)

according to (A.33). To express the (i, j) term of the matrices in (A.38), use (A.30) and (A.31) with A = H⊤ d(H) and the fact
that

dL̃ij =


dli if i = j and i = 1, . . . , n ∧ p
0 if i ≠ j or, when p > n, i = n + 1, . . . , p or j = n + 1, . . . , p.

For i ≠ j, we have

(H⊤ d(S)H)ij =


(H⊤ d(H))ij (lj − li) if i, j = 1, . . . , n ∧ p
(H⊤ d(H))ij lj if p > n, j = n + 1, . . . , p and i = 1, . . . , n
(H⊤ d(H))ij li if p > n, i = n + 1, . . . , p and j = 1, . . . , n
0 if p > n, i, j = n + 1, . . . , p,

so that it follows that

(H⊤d(H))ij =



1
lj − li

(H⊤

1 d(S)H1)ij if i, j = 1, . . . , n ∧ p

1
lj
(H⊤

2 d(S)H1)ij if p > n, i = n + 1, . . . , p and j = 1, . . . , n

1
li
(H⊤

1 d(S)H2)ij if p > n, j = n + 1, . . . , p and i = 1, . . . , n.

(A.39)

As S = U U⊤, replacing d(S) by d(U)U⊤
+ U d(U⊤) in (A.39), gives (A.36). �

Lemma A.3 is applied to obtain the partial derivatives of the diagonal elements of L and of the elements of H with respect
to the generic elements of U .

Lemma A.4. For 1 ≤ m ≤ n ∧ p, 1 ≤ j ≤ n and 1 ≤ i ≤ p, we have

∂ lm
∂Uij

= 2
p

k=1

(H1)imUkj(H1)km. (A.40)

Also, for 1 ≤ c, a, k ≤ p and 1 ≤ l ≤ n, we have

∂Hak

∂Ucl
=


A + B if p > n
A if p ≤ n (A.41)

where

A =

n∧p
i≠k

p
m=1

Hai [Hci Hmk + Hck Hmi]Uml

lk − li
(A.42)

and

B =

p
i=n+1

p
m=1

Hai [Hci Hmk + Hck Hmi]Uml

lk
. (A.43)
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Proof. Let 1 ≤ m ≤ n ∧ p. Using (A.28) and d(S) = d(U)U⊤
+ U d(U⊤)we have

dLmm = (H⊤

1 d(S)H1)mm

= (H⊤

1 [d(U)U⊤
+ U d(U⊤)]H1)mm

= (H⊤

1 d(U)U⊤ H1)mm + ({H⊤

1 U d(U⊤)H1}
⊤)mm

= 2 (H⊤

1 d(U)U⊤ H1)mm

= 2
p

i=1

n
j=1

p
k=1

(H⊤

1 )mi (dU)ij (U⊤)jk (H1)km

= 2
p

i=1

n
j=1

p
k=1

(H1)im Ukj (H1)km dUij

=

p
i=1

n
j=1


2

p
k=1

(H1)im Ukj (H1)km


dUij.

As, for 1 ≤ m ≤ n ∧ p, we have Lmm = lm, Equality (A.40) follows, for any 1 ≤ j ≤ n and any 1 ≤ i ≤ p, according to (A.34).
Now, since HH⊤

= Ip, we can write

dHak = (HH⊤d(H))ak =

p
i=1

Hai(H⊤d(H))ik, (A.44)

which can be expressed, in the case where p > n, as

dHak =

n
i=1

Hai(H⊤d(H))ik +

p
i=n+1

Hai(H⊤d(H))ik. (A.45)

In this last case, applying (A.35) and (A.36) in Lemma A.3, we have

dHak = A + B (A.46)

where

A =

n
i≠k

Hai


1

lk − li


(H⊤d(U)U⊤H)ik + (H⊤ U d(U⊤)H)ik


(A.47)

and

B =

p
i=n+1

Hai


1
lk


(H⊤d(U)U⊤H)ik + (H⊤ U d(U⊤)H)ik


. (A.48)

Now, expanding (A.47) gives

A =

n
i≠k

Hai


1

lk − li

p
c=1

n
l=1

p
m=1

[Hci dUcl Uml Hmk + Hck dUcl Uml Hmi]



=

p
c=1

n
l=1


n

i≠k

p
m=1

1
lk − li

Hai [HciHmk + Hck Hmi]Uml


dUcl (A.49)

while (A.48) equals

B =

p
c=1

n
l=1


p

i=n+1

p
m=1

1
lk

Hai [Hci Hmk + Hck Hmi]Uml


dUcl. (A.50)

Finally, by combining (A.49) and (A.50), we obtain that dHak equals

p
c=1

n
l=1


n

i=1
i≠k

p
m=1

Hai[HciHmk + HckHmi]Uml

lk − li
+

p
i=n+1

p
m=1

Hai[HciHmk + HckHmi]Uml

lk

 dUcl

which is (A.41) in the case where p > n, according to (A.34).
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The result for the case p ≤ n is easily deduced by following the same steps and using (A.44) instead of (A.45) for the
differential operator dHak. �

An application of Lemma A.4 to the critical term (U∇U⊤)⊤H1 ϕ(L)H⊤

1 gives the following result.

Lemma A.5. For any diagonal matrix ϕ(L) = diag(ϕ1(L), . . . , ϕn∧p(L)) and for 1 ≤ i, j ≤ p, the generic term Bij =
U ∇U⊤ H1 ϕ(L)H⊤

1


ij of the matrix U ∇U⊤ H1 ϕ(L)H⊤

1 equals

n
q=1

HiqHjq


2lq
∂ϕq(L)
∂ lq

+

n
b≠q

lbϕq(L)− lbϕb(L)
lq − lb


+

p
b=n+1

HibHjb

n
q=1

ϕq(L) if p > n

p
q=1

HiqHjq


2lq
∂ϕq(L)
∂ lq

+

p
b≠q

lbϕq(L)− lbϕb(L)
lq − lb


if p ≤ n.

Proof. First, we deal with the case p > n. For 1 ≤ i, j ≤ p, we have


(U∇U⊤)⊤H1ϕH⊤

1


ij =

p
k=1

(U∇U⊤)ki(H1ϕH⊤

1 )kj = S1 + S2 + S3,

where

S1 =

p
k=1

n
l,q=1

Ukl (H1)kq
∂ϕq(L)
∂Uil

(H1)jq (A.51)

S2 =

p
k=1

n
l,q=1

Ukl
∂(H1)kq

∂Uil
ϕq(L) (H1)jq, (A.52)

and

S3 =

p
k=1

n
l,q=1

Ukl (H1)kq ϕq(L)
∂(H1)jq

∂Uil
. (A.53)

To expand the Si’s terms, we use the decomposition L = H⊤ S H and the fact that

Lij =

0 if i ≠ j
li if i = j
0 if i ≥ n + 1.

(A.54)

First, as for (A.51), we have

S1 =

p
k=1

n
l,q=1

Ukl(H1)kq

n
m=1

∂ϕq(L)
∂ lm

∂ lm
∂Uil

(H1)jq,

so that, using (A.40) in Lemma A.4, we can write

S1 =

p
k=1

n
l,q,m=1

Ukl(H1)kq
∂ϕq(L)
∂ lm

2
p

q3=1

(H1)imUq3 l(H1)q3m(H1)jq

= 2
p

k,q3=1

n
q,m=1

(H1)kqSkq3(H1)im(H1)jq
∂ϕq(L)
∂ lm

= 2
n

q,m=1

Lqm (H1)im (H1)jq
∂ϕq(L)
∂ lm

= 2
n

m=1

lm
∂ ϕm(L)
∂ lm

(H1)im (H1)jm (A.55)

since S = UU⊤ and thanks to (A.54).
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As for S2 in (A.52), applying (A.41) in Lemma A.4, we have

S2 =

p
k=1

n
l,q=1

Ukl (H1)jq ϕq(L)


n

q1≠q

p
q2=1

[Hkq1Hiq1Hq2q + Hkq1HiqHq2q1 ]Uq2 l

lq − lq1

+

p
q1=n+1

p
q2=1

[Hkq1Hiq1Hq2q + Hkq1HiqHq2q1 ]Uq2 l

lq



=

p
k=1

n
q=1

(H1)jqSkq2ϕq(L)


n

q1≠q

p
q2=1

[Hkq1Hiq1Hq2q + Hkq1HiqHq2q1 ]

lq − lq1

+

p
q1=n+1

p
q2=1

[Hkq1Hiq1Hq2q + Hkq1HiqHq2q1 ]

lq



=

p
k=1

n
q=1


n

q1≠q

p
q2=1

ϕq(L)
lq − lq1

[HjqSkq2Hkq1Hiq1Hq2q + HjqSkq2Hkq1HiqHq2q1 ]

+

p
q1=n+1

p
q2=1

ϕq(L)
lq

[HjqSkq2Hkq1Hiq1Hq2q + HjqSkq2Hkq1HiqHq2q1 ]



=

n
q=1

n
q1≠q

ϕq(L)
lq − lq1

[Lq1qHjqHiq1 + Lq1q1HjqHiq]

+

n
q=1

p
q1=n+1

ϕq(L)
lq

[Lq1qHjqHiq1 + lq1HjqHiq].

Then, using (A.54), we can see that S2 reduces to

S2 =

n
q=1

n
q1≠q

HjqHiqlq1ϕq(L)
lq − lq1

=

n
q=1

n
q1≠q

Hiq1Hiq1
lqϕq1(L)
lq1 − lq

. (A.56)

Similarly, S3 in (A.53) can be expressed as

S3 =

p
k=1

n
l,q=1

Ukl(H1)kqϕq(L)


n

q1≠q

p
q2=1

[Hjq1Hiq1Hq2q + Hjq1HiqHq2q1 ]

lq − lq1
Uq2 l

+

p
q1=n+1

p
q2=1

[Hjq1Hiq1Hq2q + Hjq1HiqHq2q1 ]

lq
Uq2 l



=

p
k=1

n
q=1

HkqSkq2ϕq(L)


n

q1≠q

p
q2=1

[Hjq1Hiq1Hq2q + Hjq1HiqHq2q1 ]

lq − lq1

+

p
q1=n+1

p
q2=1

[Hjq1Hiq1Hq2q + Hjq1HiqHq2q1 ]

lq



=

p
k=1

n
q=1

n
q1≠q

p
q2=1

HkqSkq2ϕq(L)Hjq1Hiq1Hq2q

lq − lq1

+

p
k=1

n
q=1

n
q1≠q

p
q2=1

HkqSkq2ϕq(L)Hjq1HiqHq2q1

lq − lq1

+

p
k=1

n
q=1

p
q1=n+1

p
q2=1

HkqSkq2ϕq(L)Hjq1Hiq1Hq2q

lq

+

p
k=1

n
q=1

p
q1=n+1

p
q2=1

HkqSkq2ϕq(L)Hjq1HiqHq2q1

lq
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=

n
q=1

n
q1≠q

lqHjq1Hiq1ϕq(L)
lq − lq1

+

n
q=1

n
q1≠q

Lqq1Hjq1Hiqϕq(L)
lq − lq1

+

n
q=1

p
q1=n+1

lqHjq1Hiq1ϕq(L)
lq

+

n
q=1

p
q1=n+1

Lqq1ϕq(L)Hjq1Hiq

=

n
q=1

n
q1≠q

Hjq1Hiq1
lqϕq(L)
lq − lq1

+

n
q=1

p
q1=n+1

Hjq1Hiq1ϕq(L), (A.57)

where the last equality is due to (A.54). Finally, gathering the above expressions of S1, S2 and S3 in (A.55)–(A.57), we obtain
the desired result when p > n. The case p ≤ n is easily deduced, following the same steps, by replacing ‘‘n’’ by ‘‘p’’ and by
removing the sum

p
q1=n+1. �

Thanks to Lemma A.5, the following proposition provides an expression for the quantity tr

n G(X, S)+ U ∇U⊤ G⊤(X, S)


in the case where G(X, S) = H1 L−1 Ψ (L)H⊤

1 .

Proposition A.1. Let Ψ (L) = diag(ψ1(L), . . . , ψn∧p(L)) and G(X, S) = H1 L−1 Ψ (L)H⊤

1 . We have

tr

n G(X, S)+ U ∇U⊤ G⊤(X, S)


=

n∧p
k=1


|n − p| − 1

 ψk(L)
lk

+ 2
∂ψk(L)
∂ lk

+

n∧p
b≠k

ψk(L)− ψb(L)
lk − lb


. (A.58)

Proof. Note first that

tr (G(X, S)) = tr

L−1 Ψ (L)


=

n∧p
k=1

ψk(L)
lk

, (A.59)

so that we will have to calculate

tr

U ∇U⊤ G⊤(X, S)


=

n∧p
k=1

Bii (A.60)

where, Bij is defined in Lemma A.4 with ϕ(L) = L−1 Ψ (L), that is, with ϕk = ψk(L)/lk, for 1 ≤ k ≤ n∧ p. We have, according
to Lemma A.4,

Bij =


Cij + Dij if p > n
Cij if p ≤ n (A.61)

where

Cij =

n∧p
k=1

HikHjk


2

∂ψk(L)
∂ lk

−
ψk(L)
lk


+

n∧p
b≠k

lb ψk(L) l−1
k − ψb(L)

lk − lb


(A.62)

and

Dij =

p
b=n+1

HibHjb

n
k=1

ψk(L) l−1
k . (A.63)

Note that, for 1 ≤ k ≤ n ∧ p, the following bookkeeping identity holds
n∧p
b≠k

lb ψk(L) l−1
k − lk ψb(L) l−1

k

lk − lb
=

n∧p
b≠k

lb ψk(L)− lk ψb(L)+ lk ψk(L)− lk ψk(L)
lk (lk − lb)

=

n∧p
b≠k

ψk(L)− ψb(L)
lk − lb

−

n∧p
b≠k

ψk(L)
lk

=

n∧p
b≠k

ψk(L)− ψb

lk − lb
− [(n ∧ p)− 1]

ψk(L)
lk

.
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Therefore (A.62) equals

Cij =

n∧p
k=1

Hik Hjk


2
∂ψk(L)
∂ lk

− [(n ∧ p)+ 1]
ψk(L)
lk

+

n∧p
b≠k

ψk(L)− ψb(L)
lk − lb



=

n∧p
k=1

Hik ψ
∗

k (L)H
⊤

kj

= (H1 Ψ
∗(L)H⊤

1 )ij, (A.64)

where Ψ ∗(L) = diag(ψ∗

1 (L), . . . , ψ
∗
n∧p(L))with

ψ∗

k (L) = 2
∂ψk(L)
∂ lk

− [(n ∧ p)+ 1]
ψk(L)
lk

+

n∧p
b≠k

ψk(L)− ψb(L)
lk − lb

(A.65)

for 1 ≤ k ≤ n ∧ p.
Now we deal with the quantity in (A.63) which involves p > n. Recalling the decomposition of H in (A.28), we have

Dij = (H2 H⊤

2 )ij tr(L
−1 ψ(L)) = (Ip − H1H⊤

1 )ij tr(L
−1 ψ(L)), (A.66)

according to (A.29).
Gathering (A.64) and (A.66) in (A.61) gives

Bij =


(H1 Ψ

∗(L)H⊤

1 )ij + (Ip − H1H⊤

1 )ij tr(L
−1 Ψ (L)) if p > n

(H1 Ψ
∗(L)H⊤

1 )ij if p ≤ n
(A.67)

and hence (A.60) can be written as

tr

U ∇U⊤ G⊤(X, S)


=


tr

Ψ ∗(L)


+ (p − n) tr(L−1 Ψ (L)) if p > n

tr

Ψ ∗(L)


if p ≤ n,

which is equal, according to (A.65) and to (A.59), to

n
k=1


2
∂ψk(L)
∂ lk

+ [−2 n + p − 1]
ψk(L)
lk

+

n
b≠k

ψk(L)− ψb(L)
lk − lb


if p > n

p
k=1


2
∂ψk(L)
∂ lk

− [p + 1]
ψk(L)
lk

+

p
b≠k

ψk(L)− ψb(L)
lk − lb


if p ≤ n.

(A.68)

Finally, after simplifying, (A.59) and (A.68) yield (A.58), which is the desired result. �

Applying Proposition A.1 to Ψ (L) in (2.20) gives rise to the following corollary.

Corollary A. Let Ψ (L) be as in (2.20). Then

[n − (|n − p| − 3)] tr (G(X, S))+ tr

U ∇U⊤ G⊤(X, S)


=

n∧p
k=1


2
lk

∂δk(L)
∂ lk

+

n∧p
b≠k

{δk(L)− a}/lk − {δb(L)− a}/lb
lk − lb


, (A.69)

which is nonnegative under Conditions (2.17), (2.18) and the second inequality in (2.22).

Proof. It follows from (A.58) and (A.59) that

[n − (|n − p| − 3)] tr (G(X, S))+ tr

U ∇U⊤ G⊤(X, S)


=

n∧p
k=1


2
ψk(L)
lk

+ 2
∂ψk(L)
∂ lk

+

n∧p
b≠k

ψk(L)− ψb(L)
lk − lb


. (A.70)

Now, by (2.20), for k = 1, . . . , n ∧ p, ψk(L) = (δk(L)− a)/lk so that

∂ψk(L)
∂ lk

=
1
lk

∂δk(L)
∂ lk

+
a − δk(L)

l2k
and the terms ψk(L)/lk cancel in (A.70), which gives (A.69).
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As for the sign of (A.69), note first that, by Condition (2.18), the derivative terms on the right hand side of (A.69) are
nonnegative. We will see that the other terms are nonnegative as well, so that the quantity in (A.69) is nonnegative. Indeed,
for k = 1, . . . , p and for b ≠ k, we have

1
lk − lb


δk(L)− a

lk
−
δb(L)− a

lb


=
δk(L) lb − a lb − δb(L) lk + a lk

lk lb (lk − lb)

=
δk(L) lb − δb(L) lk

lk lb (lk − lb)
+

a
lk lb

=
lb (δk(L)− δb(L))− δb(L) (lk − lb)

lk lb (lk − lb)
+

a
lk lb

=
δk(L)− δb(L)
lk (lk − lb)

+
a − δb(L)

lk lb
≥ 0,

according to (2.15), (2.17) and the second inequality in (2.22). �

A.4. Matrix and trace inequalities

Through the singular value decomposition in (2.14), we have S+
= H1 L−1 H⊤

1 and for any p × 1 vector x it can be seen
that

x⊤ S+ x = (H⊤

1 x)⊤ L−1 (H⊤

1 x) =

p
i=1

1
li
(H⊤

1 x)2i ≥

p
i=1

1
p

j=1
lj

(H⊤

1 x)2i = x⊤
H1 H⊤

1

tr(L)
x. (A.71)

Therefore, it follows that

S+
≥

H1 H⊤

1

tr(S)
, (A.72)

and hence,

tr(S+) ≥
tr(H1 H⊤

1 )

tr(S)
=

n ∧ p
tr(S)

. (A.73)

Similarly, we can show that

tr(S+ Q0) ≥
tr(H1 H⊤

1 Q0)

tr(S)
=

tr(S S+ Q0)

tr(S)
. (A.74)

Since Q0 = Q (Q⊤ Q )−1 Q⊤

tr(S+ Q0) = tr([Q (Q⊤ Q )−1/2
]
⊤ S+

[Q (Q⊤ Q )−1/2
])

and since, setting x = H⊤

1 Q (Q⊤ Q )−1/2 y, for any p × 1 vector y, it follows from (A.71) that

[Q (Q⊤ Q )−1/2
]
⊤ S+

[Q (Q⊤ Q )−1/2
] ≥

[H⊤

1 Q (Q⊤ Q )−1/2
]
⊤ S+

[H⊤

1 Q (Q⊤ Q )−1/2
]

tr(S)
.
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