期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:119
Asymptotic cumulants of ability estimators using fallible item parameters
Article
Ogasawara, Haruhiko
关键词: Item response theory;    Asymptotic cumulants;    Bayes modal;    Pseudo maximum likelihood;    Higher-order asymptotic variance;    Model misspecification;   
DOI  :  10.1016/j.jmva.2013.04.008
来源: Elsevier
PDF
【 摘 要 】

The asymptotic cumulants of ability estimators using fallible or estimated item parameters in an ability test based on item response theory are given up to the fourth order with higher-order asymptotic variance. The ability estimators cover those obtained by maximum likelihood, Bayes, and pseudo Bayes modal estimation. For estimation of item parameters, the marginal maximum likelihood and Bayes methods are used. Asymptotic cumulants with higher-order asymptotic variance are given with and without model misspecification, and before and after studentization. Three conditions for the relative size of the number of items for ability estimation to that of examinees for item parameter calibration are presented: two of them give some justification for neglecting sampling variation of estimated item parameters. Numerical illustration with simulations is shown using the two-parameter logistic model. (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2013_04_008.pdf 492KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:1次