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a b s t r a c t

The asymptotic cumulants of ability estimators using fallible or estimated item parameters
in an ability test based on item response theory are givenup to the fourth orderwith higher-
order asymptotic variance. The ability estimators cover those obtained by maximum
likelihood, Bayes, and pseudo Bayes modal estimation. For estimation of item parameters,
the marginal maximum likelihood and Bayes methods are used. Asymptotic cumulants
with higher-order asymptotic variance are givenwith andwithoutmodelmisspecification,
and before and after studentization. Three conditions for the relative size of the number
of items for ability estimation to that of examinees for item parameter calibration are
presented; two of them give some justification for neglecting sampling variation of
estimated item parameters. Numerical illustration with simulations is shown using the
two-parameter logistic model.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

When the proficiency level or ability of an examinee is estimated using test items based on item response theory (IRT),
and especially when the item parameters concerned have been estimated separately from the examinee, it is a common
practice to regard the item parameter estimates as fixed ones. This is partially due to the intractableness of considering
their stochastic properties in this situation. When the item parameters have been estimated based on a large sample for
item calibration, the practice is quite reasonable, since the item parameter estimates can be seen, in a practical sense, as
population values.

Whenpopulation or fixed itemparameters are available, the estimation of ability is carried out in variousways.Maximum
likelihood (ML) estimation [18], [6, Section 20.3] assuming a correctly specified IRT model is a standard one. The Bayes
methods of estimation have also been developed with various advantages over ML estimation. The maximum a posteriori
(MAP) estimator, also known as the Bayes modal (BM) estimator [38, Chapter 2], [7], and the expected a posteriori (EAP)
estimator, also known as the posterior mean [4,5], are familiar ones. For an informative prior distribution, the standard
normal is typically used [21]. In this paper, the term BM estimator (BME) refers to the estimator using the standard
normal prior unless otherwise specified. On the other hand, non-informative prior distributions, e.g., the Jeffreys [14],
[15, Section 3.10] prior, can also be used.

Warm [51] coined a weighted likelihood (WL) method, which is seen as a weighted score and consequently a pseudo
Bayes method. The WL method was developed to remove the asymptotic bias of the ability estimator by ML. It is known
that, in the case of the two-parameter logistic model (2PLM), the WL estimator (WLE) is equal to the Jeffreys Bayes modal
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estimator (JME). The asymptotic unbiasedness of the WLE when the 2PLM holds stems from the general result that the JME
based on a distribution in the exponential family with canonical parametrization has no asymptotic bias [10].

Lord [20] and Lord [21] gave the asymptotic biases of the ML estimator (MLE) and the BME of ability under correct
model specification (c.m.s.) in the three-parameter logistic model (3PLM), respectively. Ogasawara [28] gave the asymptotic
cumulants of the MLE in a general model like the four-parameter logistic model (4PLM) up to the fourth order with higher-
order asymptotic variance under possible model misspecification (p.m.m.) with and without studentization of the MLE.
Ogasawara [30] dealt with the ML, BM, WL and JM estimators as special cases of the (pseudo) Bayes estimator with general
weight, where the weight is null for the MLE, and derived results corresponding to those of the MLE in [28].

The above asymptotic results are derived with the assumption of known item parameters and known probabilities of
correct responses to itemswhen the IRTmodel fitted is misspecified. In this paper, the asymptotic properties corresponding
to Ogasawara [30] will be derived under the condition that the item parameters have been estimated by using a sample of
examinees for item calibration independent of the examinee whose ability is to be estimated.

As there are several estimators of ability, there are several ways to estimate item parameters including the Bayes
method (see [3,42,11]). Joint maximum likelihood (JML) estimation gives simultaneously estimates of abilities and item
parameters [22,19]. Since in order to see the asymptotic properties of the whole set of estimators by JML a special condition
of both the numbers of examinees and items being large is required [46], the JML method is not dealt with in this paper.
On the other hand, standard methods of estimation are marginal maximum likelihood (MML) [7,8] and its Bayes versions.
Bayesian estimation of item parameters has been developed by Swaminathan and Gifford [43–45], Mislevy and Bock [24],
Mislevy [23], Shigemasu and Fujimori [39], Tsutakawa and Lin [49], Tsutakawa [47], and Zeng [54], amongothers, for the one-
parameter logistic model (1PLM), 2PLM, and 3PLM. Ogasawara [32] gave the asymptotic properties of the MML estimators
(MMLEs) and marginal BMEs (MBMEs) of item parameters corresponding to the properties given by Ogasawara [30] using a
general weight similar to that of Ogasawara [30]. In this paper, the MMLEs and MBMEs of the item parameters are assumed
to be used for item calibration.

In Appendix A.1.1 of the Appendix, a review of the works on the ability estimators using fallible or estimated item
parameters will be given. In the following sections, the asymptotic expansions of the ability estimators dealt with by
Ogasawara [30] will be derived, where three conditions of the asymptotic relative sizes between the samples in item
calibration and ability estimation are presented. Under some conditions, the asymptotic justification of neglecting sampling
variability of item parameter estimators will be shown. Numerical illustration will also be given using the 2PLM. Technical
details not presented here are available in the supplements to this paper [33,34].

2. Stochastic expansion of the ability estimator using fallible item parameters

2.1. Orders of the relative sample sizes

Let θ be the fixed ability parameter in an IRT model, e.g., the 3PLM and the 4PLM. Denote its estimator and true
(population) value by θ̂ and θ0 with −∞ < θ0 < ∞, respectively, where θ̂ is the generic estimator given by the ML or
(pseudo) Bayes method based on responses by an examinee to n dichotomously scored items. When the item parameters
in the IRT model are unknown, as is usual in practice, they are assumed to be estimated by a separate sample of size N for
item calibration. As is addressed in Appendix A.1.1 of the Appendix, N is usually (much) larger than n, since large sample
sizes are required for accurate estimation in item calibration. So, the assumptions O(n3/2/N) = O(1) and O(n2/N) = O(1)
will be used as well as O(n/N) = O(1). The values of n in ability tests based on IRT are in many cases less than 100, and N
is typically required to be as large as 1000.

The following (approximate) functional values may be helpful to see the reasonableness of the above assumptions.

n : 30 50 70 100 200 300
N(n3/2) : 164 354 586 1000 2828 5196
N(n2) : 900 2500 4900 10,000 40,000 90,000

n(N1/2) : 14 22 26 32 45 55
n(N2/3) : 34 63 79 100 159 208
N : 200 500 700 1000 2000 3000

In the above cases, for example, n = 30 with N(n2) = 900 and n(N2/3) = 100 with N = 1000 may be typical values in
practice, though it is to be noted that in asymptotics, for example, O(n2/N) = O(1) is a limiting property. Further, assume
for comparison that O(n5/2/N) = O(1). When n = 30, N(n5/2) becomes 4930, which is seldom satisfied in practice.

2.2. Stochastic expansion of θ̂

Let α be the q-dimensional vector of item parameters, with α̂ and α0 being its sample and population counterparts,
respectively. In this paper, α̂ is assumed to be obtained by MML or MBM using a sample of size N for item calibration that
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where 2n is the number of response patterns for n dichotomously scored items; rj is the number of examinees having the
jth response pattern; Ψk is the probability of a correct response to the kth item by an examinee with ability θ in the case of
the 3PLM; non-stochastic Xjk is 1 (correct response) and 0 (incorrect response) for the kth item in the jth response pattern;
and pα(α) is the prior density of α for MBM, which is 1 for MML. Actually, the integral in (2.1) is numerically obtained by
Gaussian quadrature. In the case of the 2PLM, ck in Ψk is 0 and α(k) = (ak, bk)′ (k = 1, . . . , n).

In the second stage,N = 1, α is regarded as a known fixed vector equal to α̂, θ is regarded as an unknown fixed parameter,
and θ̂ is obtained by maximizing the weighted likelihood as follows. Let l̄Wθ be the mean of the weighted log-likelihood:

l̄Wθ = n−1
{log L + log p(θ)} = l̄θ + n−1 log p(θ) with L =
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k Q 1−Uk

k , (2.2)

where Uk is a dichotomous variable taking 0 and 1 for incorrect and correct responses to the kth item by an examinee with
ability θ , and Pk = Pk(θ) = Pr(Uk = 1|θ, α(k)) (k = 1, . . . , n) is the probability of the correct response under c.m.s. with
Qk ≡ 1 − Pk (k = 1, . . . , n). When the model is misspecified, the true probability is denoted by

PTk ≡ ETθ (Uk|θ) with QTk ≡ 1 − PTk (k = 1, . . . , n), (2.3)
where ETθ (·) indicates that the expectation ofUk is taken using the true distribution ofUk given θ , which can be independent
of θ . When θ = θ0, the notation ETθ0(·) ≡ ETθ (·|θ0) is also used.

The quantity p(θ) in (2.2) is the prior density of θ when the Bayesmethod is used. In the case ofWL estimation, p(θ) is not
necessarily available in explicit form. However,ηθ ≡ ∂ log p(θ)/∂θ or its counterpart is givenwithηθ0 ≡ ∂ log p(θ)/∂θ |θ=θ0 .
That is, for ML, BM,WL, and JM estimation, ηθ = 0, −1, j̄/(2ī), and ī(D1)/(2ī), respectively, where ī is the Fisher information
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When α0 is known, Ogasawara [30, Eq. (3.2), Appendix A.1] gave the following stochastic expansion under p.m.m.:
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(for full comprehension of (2.5), see also [28,31]).

In (2.5), ∂ l̄θ0/∂θ0 = ∂ l̄θ/∂θ |θ=θ0 with other partial derivatives similarly defined, λθ0 ≡ ETθ0
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The factors in the terms of (2.4) are rewritten as
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Usually, in practice, α0 in (2.6) and consequently that in (2.4) is unavailable, and it is replaced by fallible or estimated α̂.
The stochastic expansion of α̂ given by MML and MBM estimation is obtained by Ogasawara [26, Eqs. (3.1) and (A.2)];
[27, Eqs. (2.2) and (2.4)]; [32, Eq. (3.6)], which is summarized as
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statistic p = (r1, . . . , r2n)′/N , i.e., the vector of sample proportions of 2n response patterns with πT ≡ ETα0(p), which is
assumed to be known under m.m., and ETα0(·) is defined similarly to ETθ0(·):
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where x⟨k⟩ denotes the k-fold Kronecker product of x, and ∂α1W/∂π′

T associated only with the Bayes method is given by
Ogasawara [32, Eq. (3.4)].

When α̂ is used, (2.6) with unchanged θ0 becomes
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(2.9)

Now, all the terms of (2.9) are stochastic ones, and are expanded about α̂ = α0, whose results are given in [33,
Subsection A.2]. Using the notation defined there, the expansion of θ̂ , when N = O(nk) (k ≥ 1), is as follows:
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where (·)O(·) and (·)Op(·) indicate the orders of the values in parentheses. Note that in [33, Subsection A.2] and consequently
in (2.10), the relative orders addressed in Section 2.1 are not specified. The corresponding results with such relative orders
will be given in Appendix A.1.2 of the Appendix under the following conditions.

Condition A : N = O(n) (n = O(N)). (2.11)

Condition B : N = O(n3/2) (n = O(N2/3)). (2.12)

Condition C : N = O(n2) (n = O(N1/2)). (2.13)

3. Asymptotic cumulants of θ̂ using fallible item parameters

Define w = n1/2(θ̂ − θ0), with β
(0)
k (k = 1, . . . , 4) and β

(0)
H2 being the kth asymptotic cumulants and the higher-order

added asymptotic variance of w, respectively, each independent of n, when the item parameters are known (a constant
‘‘independent of n’’ in this paper refers to the constant after removing an associated power of n). Let c̄ = n/N = O(1),
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c̄∗
= n3/2/N = O(1), and c̄∗∗

= n2/N = O(1) under Conditions A, B, and C, respectively. Then, β̄k (k = 1, . . . , 4) and β̄H2

depending on c̄ , c̄∗, or c̄∗∗ are the counterparts of β(0)
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variance of order O(n−1/2) for w, which is located, in terms of order, between the usual asymptotic variance of order O(1)
and the higher-order added asymptotic variance of order O(n−1) for w.
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following.
(a) Condition A: N = O(n) (c̄ = n/N = O(1)).

Theorem 1. Under Condition A, the asymptotic cumulants of w up to the fourth order and the higher-order asymptotic variance
with associated assumptions and p.m.m. are given by
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where the expressions of undefined quantities are given in [33, Subsection A.3].

Proof. See [33, Subsection A.3]. �

From (3.2) and [33, Subsection A.3], we have the following alternative expressions:
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From Theorem 1, it is seen that all the asymptotic cumulants derived there are different from those based on known item
parameters.
(b) Condition B: N = O(n3/2) (c̄∗

= n3/2/N = O(1)).

Theorem 2. Under Condition B, the asymptotic cumulants of w corresponding to those in Theorem 1 are given by

κ1(w) = n−1/2β
(0)
1 + O(n−1),

κ2(w) = β
(0)
2 + n−1/2c̄∗β

(∆)
h2 + n−1β

(0)
H2 + O(n−3/2),

κ3(w) = n−1/2β
(0)
3 + O(n−1), κ4(w) = n−1β

(0)
4 + O(n−3/2),

(3.5)

where β
(∆)
h2 is algebraically equal to β

(∆)
2 in Theorem 1.
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Proof. See [33, Subsection A.3]. �

For θ̂ , the following expressions are obtained:

κ1(θ̂ − θ0) = n−1β
(0)
1 + O(n−3/2),

κ2(θ̂) = n−1β
(0)
2 + (N−1β

(∆)
h2 )O(n−3/2) + n−2β

(0)
H2 + O(n−5/2),

κ3(θ̂) = n−2β
(0)
3 + O(n−5/2), κ4(θ̂) = n−3β

(0)
4 + O(n−7/2).

(3.6)

From Theorem 2 and (3.6), we find that the asymptotic cumulants derived above are the same as those based on known
item parameters, except that the intermediate higher-order terms n−1/2c̄∗β

(∆)
h2 in (3.5) and (N−1β

(∆)
h2 )O(n−3/2) in (3.6) are

added, which were the terms in the usual asymptotic variances in Theorem 1 and (3.3). That is, the higher-order asymptotic
variance of w up to order O(n−1/2) in Theorem 2 is unchanged from that in Theorem 1. It is to be noted that the orders of
the residual terms in Theorem 2 are lower than those in Theorem 1, (3.3) and (3.4) by n1/2.
(c) Condition C: N = O(n2) (c̄∗∗

= n2/N = O(1)).

Theorem 3. Under Condition C, the asymptotic cumulants of w corresponding to those in Theorems 1 and 2 are given by

κ1(w) = n−1/2β
(0)
1 + O(n−3/2),

κ2(w) = β
(0)
2 + n−1(β

(0)
H2 + c̄∗∗β

(∆)
H2 ) + O(n−2),

κ3(w) = n−1/2β
(0)
3 + O(n−3/2), κ4(w) = n−1β

(0)
4 + O(n−2),

(3.7)

where β
(∆)
H2 is algebraically equal to β

(∆)
2 in Theorem 1 and β

(∆)
h2 in Theorem 2 (do not confuse β

(∆)
H2 in Theorem 3 with that

in Theorem 1).

Proof. See [33, Subsection A.3]. �

For θ̂ , we have

κ1(θ̂ − θ0) = n−1β
(0)
1 + O(n−3/2),

κ2(θ̂) = n−1β
(0)
2 + n−2β

(0)
H2 + (N−1β

(∆)
H2 )O(n−2) + O(n−3),

κ3(θ̂) = n−2β
(0)
3 + O(n−3), κ4(θ̂) = n−3β

(0)
4 + O(n−4).

(3.8)

From Theorem 3 and (3.8), it is found that the asymptotic cumulants of w are the same as those based on known item
parameters, except the higher-order asymptotic variance, where the terms n−1c̄∗∗β

(∆)
H2 in Theorem 3 and (N−1β

(∆)
H2 )O(n−2) in

(3.8) are added.
Theorems 2 and 3 indicate that the asymptotic cumulants up to the fourth order in the theorems are the same, and that

their higher-order asymptotic variances up to order O(n−1) for w are the same, and larger than that based on known item
parameters by n−1/2c̄∗β

(∆)
h2 in Theorem 2 and by n−1c̄∗∗β

(∆)
H2 in Theorem 3, where the latter is algebraically equal to the

former.
The expressions for the associated partial derivatives and expectations in the asymptotic cumulants are provided in [33,

Subsection A.5] and [34, Subsection A.6], respectively.

4. Asymptotic cumulants of the studentized θ̂ using fallible item parameters

The asymptotic cumulants derived earlier can be used to see the properties of theML, BM,WL, and JMestimators, denoted
generically as θ̂ . For interval estimation of θ0, the asymptotic cumulants of the studentized θ̂ are required. The methods of
studentization vary with the associated asymptotic variances of order O(n−1) for θ̂ . We use two versions of studentized θ̂ ,
denoted by t under Condition A and t∗ under Conditions B and C.

4.1. Studentization under Condition A: N = O(n) (c̄ = n/N = O(1))

Define

t ≡ n1/2(θ̂ − θ0)
ˆ̄β

−1/2

2I , (4.1)

where ˆ̄β2I = β̂
(0)
2I +

ˆ̄β
(∆)

2I = β̂
(0)
2I +c̄β̂(∆)

2I ; and β̂
(0)
2I and ˆ̄β

(∆)

2I (=c̄β̂(∆)
2I ) are the estimators ofβ(0)

2 and β̄
(∆)
2 (=c̄β(∆)

2 ) under c.m.s.,
and include α̂ and θ̂ . For estimating β̄2 = β

(0)
2 + β̄

(∆)
2 = β

(0)
2 + c̄β(∆)

2 , c.m.s. is assumed due to the difficulty of estimating
PTk (k = 1, . . . , n), since generally only a single item response by an examinee is available for estimating each PTk. On the
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other hand, under c.m.s., β(0)
2 = β

(0)
2I = ī−1

θ0
(the reciprocal of the average Fisher information) is well estimated. For β̄

(∆)
2 ,

estimating the vector πT of the true probabilities of 2n response patterns is required under m.m. In order to estimate πT,
we can use the sample counterpart p. However, since β

(∆)
2 includes β

(0)
2 , we have the similar difficulty for estimating β

(∆)
2

under m.m. So, c.m.s. is assumed for estimating β̄2 by ˆ̄β2I , though the asymptotic cumulants given later will be obtained
under p.m.m., yielding generally the non-unit asymptotic variance of t .

The subscript I in, for example, β̄2I indicates the use of the Fisher information (matrix). That is, {β̂
(0)
2I }

−1
= î is

equal to ī θ0 = n−1n
k=1{∂Pk(θ0)/∂θ0}

2/{Pk(θ0)Qk(θ0)}, where θ0 and α0 are replaced by θ̂ and α̂, respectively, yielding
î = n−1n

k=1(∂ P̂k/∂θ̂)2/(P̂kQ̂k), and

β̂
(∆)
2I = î−2Êθ0


∂2 l̄θ0

∂θ0∂α′

0


Ĝ−1Êθ0


∂2 l̄θ0

∂θ0∂α0



= î−2


n−1

n
k=1

1

P̂iQ̂i

∂ P̂i
∂θ̂

∂ P̂i
∂α̂

′


Ĝ−1


n−1

n
k=1

1

P̂iQ̂i

∂ P̂i
∂θ̂

∂ P̂i
∂α̂


(4.2)

(see [34, Subsection A.6.1, Equation (a.2.1) with (a.1)]), where Eθ0(·) indicates that the expectation is taken under c.m.s. for
the distributions of Uk (k = 1, . . . , n), Êθ0(·) is its sample counterpart, and

Ĝ = N−1
N

k=1

∂ l̂α(k)

∂ α̂

∂ l̂α(k)

∂α̂
′

, (4.3)

where l̂α(k) is the log marginal likelihood of α contributed by the kth subject for item calibration evaluated at α = α̂, with
l̂α(k) seen as a function of α̂. Ĝ is employed for simplicity as one of the estimators of Iα0 , the information matrix for the item
parameters per observation under c.m.s.

Using the above definitions, we have

ˆ̄β2I = β̂
(∆)
2I +

ˆ̄β
(∆)

2I = β̂
(∆)
2I + c̄β̂(∆)

2I

= î−1
+ c̄ î−2Êθ0


∂2 l̄θ0

∂θ0∂α′

0


Ĝ−1Êθ0


∂2 l̄θ0

∂θ0∂α0


. (4.4)

From the expansion of θ̂ (see (A.1)) and that of ˆ̄β
−1/2

2I given in (A.6) of Appendix A.1.3, t is expanded as

t = n1/2(θ̂ − θ0)
ˆ̄β

−1/2

2I = w ˆ̄β
−1/2

2I

= n1/2
{q(1)

Op(n−1/2)
+ q(2)

Op(n−1)
+ q(3)

Op(n−3/2)
− (n−1λ−1

θ0
ηθ0)O(n−1) + Op(n−2)}

×


β̄

−1/2
2I + b(1)

Op(n−1/2)
+ b(2)

Op(n−1)
+


n−1 β̄

−3/2
2I

2
∂β̄2I

∂θ0
λ−1

θ0
ηθ0


O(n−1)

+


N−1 β̄

−3/2
2I

2
∂β̄2I

∂α′

0
3−1

α0
ηα0


O(N−1)

+ Op(n−3/2)


= n1/2q(1)

Op(n−1/2)
β̄

−1/2
2I + n1/2(q(1)

Op(n−1/2)
b(1)
Op(n−1/2)

+ q(2)
Op(n−1)

β̄
−1/2
2I )

+ n1/2


q(1)
Op(n−1/2)


b(2)
Op(n−1)

+ n−1 β̄
−1/2
2I

2
∂β̄2I

∂θ0
λ−1

θ0
ηθ0 + N−1 β̄

−3/2
2I

2
∂β̄2I

∂α′

0
3−1

α0
ηα0



+ (q(2)
Op(n−1)

− n−1λ−1
θ0

ηθ0)b
(1)
Op(n−1/2)

+ q(3)
Op(n−3/2)

β̄
−1/2
2I


− n−1/2λ−1

θ0
ηθ0 β̄

−1/2
2I + Op(n−3/2)

≡ n1/2(t(1)Op(n−1/2)
+ t(2)Op(n−1)

+ t(3)Op(n−3/2)
− n−1λ−1

θ0
ηθ0 β̄

−1/2
2I ) + Op(n−3/2). (4.5)

From (4.5), the following results are obtained.
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Theorem 4. Under Condition A, the asymptotic cumulants of t up to the fourth order and the higher-order asymptotic variance
with associated assumptions and p.m.m. are given by

κ1(t) = n−1/2β̄t1 + O(n−3/2) = n−1/2(β̄1β̄
−1/2
2I + β

(t0)
1 ) + N−1/2c̄1/2β(t∆)

1 + O(n−3/2),

κ2(t) = β̄t2 + n−1β̄t H2 + O(n−2) = β̄2β̄
−1
2I + n−1β̄t H2 + O(n−2),

κ3(t) = n−1/2β̄t3 + O(n−3/2) = n−1/2(β̄3β̄
−3/2
2I + β

(t0)
3 + β̄

(t∆)
3 ) + O(n−3/2),

κ4(t) = n−1β̄t4 + O(n−2) = n−1(β̄4β̄
−2
2I + β̄

(t0∆)
4 ) + O(n−2),

(4.6)

where the undefined quantities are defined in [33, Subsection A.4]. �

Note that all the asymptotic cumulants derived in (4.6) are different from those based on known item parameters. Under
c.m.s., β̄t2 = β̄2β̄

−1
2I = 1 in κ2(t).

4.2. Studentization under Condition B: N = O(n3/2) (c̄∗
= n3/2/N = O(1))

Define

t∗ ≡ n1/2(θ̂ − θ0){β̂
(0)
2 }

−1/2
= n1/2(θ̂ − θ0)î1/2, (4.7)

where î an estimator of {β(0)
2 }

−1 under c.m.s. is used due to the difficulty of estimating β
(0)
2 under m.m. as in t . However, the

asymptotic cumulants of t∗ will be derived under p.m.m. Define îθ0 as î, where θ̂ is replaced by θ0, with α̂ unchanged. Let
î(D1)θ0

=
∂ ī
∂θ

| α=α̂
θ=θ0

and î(D2)θ0
=

∂2 ī
∂θ2

| α=α̂
θ=θ0

. Using (A.2), expand î1/2 as

î1/2 = î1/2θ0
+

î−1/2
θ0

2
î(D1)θ0

(θ̂ − θ0) +


î−1/2
θ0

4
î(D2)θ0

−
î−3/2
θ0

8
(î(D1)θ0

)2


(θ̂ − θ0)

2
+ Op(n−3/2)

≡ î1/2θ0
+ î(1)θ0

(θ̂ − θ0) + î(2)θ0
(θ̂ − θ0)

2
+ Op(n−3/2)

= î1/2θ0
+ î(1)θ0

{q(10)
Op(n−1/2)

+ (q(1a)
Op(N−1/2)

)Op(n−3/4) + q(20)
Op(n−1)

− n−1λ−1
θ0

ηθ0} + î(2)θ0
(q(10)

Op(n−1/2)
)2 + Op(n−5/4)

= ī1/2θ0
+ (ī(1)θ0

q(10)
Op(n−1/2)

)Op(n−1/2) +


ī−1/2
θ0

2
∂ īθ0
∂α′

0
(0(1)

α0
l(1)α0

)Op(N−1/2) + ī(1)θ0
q(1a)
Op(N−1/2)


Op(n−3/4)

+


ī(1)θ0

q(20)
Op(n−1)

+ ī(2)θ0
(q(10)

Op(n−1/2)
)2

Op(n−1)

− n−1 ī(1)θ0
λ−1

θ0
ηθ0 + Op(n−5/4)

≡ ī1/2θ0
+ j(10)

Op(n−1/2)
+ (j(1a)

Op(N−1/2)
)Op(n−3/4) + j(20)

Op(n−1)
− n−1 ī(1)θ0

λ−1
θ0

ηθ0 + Op(n−5/4), (4.8)

where ī(1)θ0
and ī(2)θ0

are î(1)θ0
and î(2)θ0

, respectively, with α̂ being replaced by α0.
Using (4.7) and (4.8) with (A.2), t∗ becomes

t∗ = n1/2
{q(10)

Op(n−1/2)
+ (q(1a)

Op(N−1/2)
)Op(n−3/4) + q(20)

Op(n−1)
+ (q(2a)

Op(n−1/2N−1/2)
)Op(n−5/4)

+ (q(30)
Op(n−3/2)

+ q(31)
Op(N−1)

)Op(n−3/2) − n−1λ−1
θ0

ηθ0 + Op(n−7/4)}

× {ī1/2θ0
+ j(10)

Op(n−1/2)
+ (j(1a)

Op(N−1/2)
)Op(n−3/4) + j(20)

Op(n−1)
− n−1 ī(1)θ0

λ−1
θ0

ηθ0 + Op(n−5/4)}

= n1/2

(q(10)

Op(n−1/2)
ī1/2θ0

)Op(n−1/2) + (q(1a)
Op(N−1/2)

ī1/2θ0
)Op(n−3/4) + (q(10)

Op(n−1/2)
j(10)
Op(n−1/2)

+ q(20)
Op(n−1)

ī1/2θ0
)Op(n−1)

+ (q(1a)
Op(N−1/2)

j(10)
Op(n−1/2)

+ q(2a)
Op(n−1/2N−1/2)

ī1/2θ0
)Op(n−5/4) + {q(10)

Op(n−1/2)
(j(20)Op(n−1)

− n−1 ī(1)θ0
λ−1

θ0
ηθ0)

+ q(1a)
Op(N−1/2)

j(1a)
Op(N−1/2)

+ (q(20)
Op(n−1)

− n−1λ−1
θ0

ηθ0)j
(10)
Op(n−1/2)

+ (q(30)
Op(n−3/2)

+ q(31)
Op(N−1)

)ī1/2θ0
}Op(n−3/2)

− n−1λ−1
θ0

ηθ0 ī
1/2
θ0


+ Op(n−5/4)

≡ n1/2(t(∗1)
Op(n−1/2)

+ t(∗1a)
Op(n−3/4)

+ t(∗2)
Op(n−1)

+ t(∗2a)
Op(n−5/4)

+ t(∗3)
Op(n−3/2)

− n−1λ−1
θ0

ηθ0 ī
1/2
θ0

) + Op(n−5/4). (4.9)

In (4.9), the terms due to the fallible item parameters are all of t(∗1a)Op(n−3/4)
and t(∗2a)

Op(n−5/4)
, and those with factors of order

Op(N−1/2) and Op(N−1) in t(∗3)
Op(n−3/2)

. From (4.9) with this property, we have the following.
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Theorem 5. Under Condition B, the asymptotic cumulants of t∗ up to the fourth order and the higher-order asymptotic variance
with associated assumptions and p.m.m. are given by

κ1(t∗) = n−1/2β
(0)
t1 + O(n−1) = n−1/2

{β
(0)
1 (β

(0)
2I )−1/2

+ β
(t0)
1 } + O(n−1) (β

(0)
2I = īθ0)

κ2(t∗) = β
(0)
2 īθ0 + n−1/2

[n3/2ETα0{(q
(1a)
Op(N−1/2)

ī1/2θ0
)2}]O(1) + n−1β

(0)
t H2 + O(n−3/2)

≡ β
(0)
2 īθ0 + n−1/2β̄

(∆)
h2 īθ0 + n−1β

(0)
t H2 + O(n−3/2)

≡ β
(0)
2 īθ0 + n−1/2c̄∗β

(∆)
h2 īθ0 + n−1β

(0)
t H2 + O(n−3/2)

≡ β
(0)
2 īθ0 + n−1/2β̄

(∆)
t h2 + n−1β

(0)
t H2 + O(n−3/2)

≡ β
(0)
2 īθ0 + n−1/2c̄∗β

(∆)
t h2 + n−1β

(0)
t H2 + O(n−3/2)

(4.10)

(β̄
(∆)
h2 , β

(∆)
h2 and β

(0)
t H2 were defined earlier; β̄(∆)

t h2 = β̄
(∆)
h2 īθ0 = c̄∗β

(∆)
h2 īθ0 , c̄

∗β
(∆)
t h2 = β̄

(∆)
t h2),

κ3(t∗) = n−1/2β
(0)
t3 + O(n−1), κ4(t∗) = n−1β

(0)
t4 + O(n−3/2)

(β(0)
tk (k = 1, 3, 4) were defined earlier).

FromTheorem5, it is seen that the effect of fallible itemparameters on the asymptotic cumulants of t∗ in (4.10) is only the
added higher-order asymptotic variance n−1/2c̄∗β

(∆)
t h2 , which is similar to the case of the non-studentized θ̂ under Condition

B (see Theorem 2). Under c.m.s., the asymptotic variance β
(0)
2 īθ0 becomes 1.

4.3. Studentization under Condition C: N = O(n2) (c̄∗∗
= n2/N = O(1))

Under Condition C, the same studentization as under Condition B is used, i.e., t∗ = n1/2(θ̂ − θ0)î1/2. Using (A.3), expand
î1/2 as

î1/2 = î1/2θ0
+ î(1)θ0

(θ̂ − θ0) + î(2)θ0
(θ̂ − θ0)

2
+ Op(n−3/2)

= î1/2θ0
+ î(1)θ0

{q(10)
Op(n−1/2)

+ q(20)
Op(n−1)

+ q(21)
Op(N−1/2)

− n−1λ−1
θ0

ηθ0} + î(2)θ0
(q(10)

Op(n−1/2)
)2 + Op(n−3/2)

= ī1/2θ0
+ (ī(1)θ0

q(10)
Op(n−1/2)

)Op(n−1/2) +


ī(1)θ0

q(20)
Op(n−1)

+ ī(2)θ0
(q(10)

Op(n−1/2)
)2

Op(n−1)

+


ī−1/2
θ0

2
∂ īθ0
∂α′

0
(0(1)

α0
l(1)α0

)Op(N−1/2) + ī(1)θ0
q(21)
Op(N−1/2)


Op(N−1/2)


Op(n−1)

− n−1 ī(1)θ0
λ−1

θ0
ηθ0 + Op(n−3/2)

≡ ī1/2θ0
+ j(10)

Op(n−1/2)
+ (j(20)

Op(n−1)
+ j(21)

Op(N−1/2)
)Op(n−1) − n−1 ī(1)θ0

λ−1
θ0

ηθ0 + Op(n−3/2)

≡ ī1/2θ0
+ j(1)

Op(n−1/2)
+ j(2)

Op(n−1)
− n−1 ī(1)θ0

λ−1
θ0

ηθ0 + Op(n−3/2) (j(1)
Op(n−1/2)

= j(10)
Op(n−1/2)

). (4.11)

Using (4.7) and (4.11) with (A.3), t∗ is expanded as

t∗ = n1/2
{q(1)

Op(n−1/2)
+ q(2)

Op(n−1)
+ q(3)

Op(n−3/2)
− n−1λ−1

θ0
ηθ0 + Op(n−2)}

× {ī1/2θ0
+ j(1)

Op(n−1/2)
+ j(2)

Op(n−1)
− n−1 ī(1)θ0

λ−1
θ0

ηθ0 + Op(n−3/2)}

= n1/2

q(1)
Op(n−1/2)

ī1/2θ0
+ (q(1)

Op(n−1/2)
j(1)
Op(n−1/2)

+ q(2)
Op(n−1)

ī1/2θ0
) + {q(1)

Op(n−1/2)
(j(2)

Op(n−1)
− n−1 ī(1)θ0

λ−1
θ0

ηθ0)

+ (q(2)
Op(n−1)
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In (4.12), the terms due to fallible item parameters are q(21)
Op(N−1/2)

ī1/2θ0
in t(∗2)

Op(n−1)
, and q(10)
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and
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in t(∗3)

Op(n−3/2)
. From (A.4) with this property, the following results are obtained.
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Theorem 6. Under Condition C, the asymptotic cumulants of t∗ up to the fourth order and the higher-order asymptotic variance
with associated assumptions and p.m.m. are given by

κ1(t∗) = n−1/2β
(0)
t1 + O(n−3/2) = n−1/2

{β
(0)
1 (β

(0)
2I )−1/2

+ β
(t0)
1 } + O(n−3/2) (β

(0)
2I = īθ0)

κ2(t∗) = β
(0)
2 īθ0 + n−1

[β
(0)
t H2 + n2ETα0{(q

(21)
Op(N−1/2)

ī1/2θ0
)2}]O(1) + O(n−2)

≡ β
(0)
2 īθ0 + n−1(β

(0)
t H2 + β̄

(t∗∆)
H2 ) + O(n−2),

≡ β
(0)
2 īθ0 + n−1(β

(0)
t H2 + c̄∗∗β

(t∗∆)
H2 ) + O(n−2),

κ3(t∗) = n−1/2β
(0)
t3 + O(n−3/2), κ4(t∗) = n−1β

(0)
t4 + O(n−2).

(4.13)

From Theorem 6, it is found that the effect of fallible item parameters on (4.13) is only the added term n−1β̄
(t∗∆)
H2 in

the higher-order asymptotic variance, where β
(t∗∆)
H2 = β

(∆)
t h2 in Theorem 5. Under c.m.s., the asymptotic variance β

(0)
2 īθ0

becomes 1.

5. Numerical illustration

In this section, the asymptotic cumulants derived in the previous sections are numerically illustrated with simulations
for true values. The 2PLM is used with and without m.m. The m.m. is specified only when estimating ability such that the
logit of Pk (k = 1, . . . , n) is perturbed using a random term following the normal distribution [28]. In the perturbation, the
initial item parameters are set to satisfy the likelihood equations using PTk for Uk (k = 1, . . . , n). For item calibration, the
2PLM is used as a true model without m.m. Under m.m. in ability estimation, the correlations of PTk and Pk over items are
0.56, 0.55, 0.48, and 0.52 when θ = −1, 0, 1, and 2, respectively.

Currently, in ability tests based on IRT, the 3PLM may be the standard one rather than the 2PLM. In this section,
the latter is used for simplicity and for the availability of the MMLEs for item parameters without difficulty. The item
parameters are randomly generated using a uniform distribution with the range [0.3, 1.3] and N(0.2, 12) for ak and bk
with Pk = 1/[1 + exp{−1.7ak(θ − bk)}] (k = 1, . . . , n), respectively. The ML, BM, and WL estimators are used, where the
WLE is equal to the JME in the 2PLM. For estimating the item parameters without m.m., MML and the Bayes method with
the independent log-normal priors for a-parameters i.e., log ak ∼ N(0, 0.52) (k = 1, . . . , n) (see e.g., [2]) are used. For the
distribution of abilities to be integrated out in MML and MBM estimation, the standard normal is assumed.

The sample sizes n = 30, 50, 70 and N = 500, 1000, considering typical ones encountered in practice, are employed
(the small size N = 200 is also partially used for comparison). The proficiency levels θ = −1, 0, 1, and 2 are adopted
for illustration, since the levels θ = −3, −2 and 3 tend to give unstable or non-converged estimation of ability. In order
to have the asymptotic cumulants of θ̂ based on estimated item parameters under c.m.s., several expectations Eα0(·) are
required. In principle, the expectations can be computed using the probabilities of 2n response patterns given by the 2PLM.
When n is large, however, the amount of computation becomes excessive. In this section, an imputationmethod of randomly
generated N#(=2000) patterns according to the multinomial distribution with the vector πT of probabilities is used, each
with the pseudo probability 1/N# for calculating the expectations (N# should not be confused with N; the results with
N#

= 10,000 are almost the same). On the other hand, simulated cumulants are given by randomly generating N sets of
item responses for item calibration followed by estimation of ability using the estimated item parameters and randomly
generated n item responses of an examinee with θ . The cases of known item parameters without the estimation of item
parameters are also used for comparison. The whole process is replicated 1000 and 10,000 times for the cases with and
without estimation of item parameters, respectively.

Tables 1–8 show the simulated and asymptotic cumulants. The tables include the numbers of deleted cases until 1000 or
10,000 regular cases were obtained. The deleted cases are due to non-convergence in estimating α0 and θ0, including some
cases of perfect score when θ = 2, where the finite value of the MLE is not available.

Tables 1–3 show the various standard errors under c.m.s. The SD values are simulated ones while the (H)ASE values are
asymptotic ones. Note that HASE(0) is the higher-order asymptotic standard error of θ̂ with known item parameters [28],
while that of θ̂ with estimated item parameters under Condition A is missing in the tables due to the complicated
expression (Theorem 1). HASE(1) is that up to order O(n−2) under Conditions B and C (Theorems 2 and 3), which is
given by HASE(0) and the difference of the squared ASE(0)

= (n−1β
(0)
2 )1/2 and ASE(1)

= {n−1(β
(0)
2 + c̄β(∆)

2I )}1/2, i.e.,
HASE(1)

= {(n−1β
(0)
2 + n−2β

(0)
H2 ) + n−1c̄β(∆)

2I }
1/2

= {(HASE(0))2 + n−1c̄β(∆)
2I }

1/2, where β
(0)
2 = β

(0)
2I = ī−1

θ0
under c.m.s.

(recall that n−1c̄ = n−3/2c̄∗
= n−2c̄∗∗ when seeing the tables under Conditions A–C).

From Tables 1 and 2, it is seen that the SD(0) values (and SD(1) values) are somewhat different for the ML, BM, and WL
estimators, and that the increases of SD(1),ASE(1) and HASE(1) over SD(0),ASE(0) and HASE(0), respectively, are small. That
is, the different SD(1) values are similar to the corresponding HASE(1) values or HASE(0) values rather than the ASE(1) values,
which suggests the reasonableness of the assumptions in Conditions B and C in these cases. However, when n is as large as 70
in Table 3, the increase of the SD(1) values over the corresponding SD(0) values becomes substantial, and the approximations
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Table 1
Simulated and asymptotic standard errors of θ̂ when the 2PLM holds, where the item parameters are known or estimated by MML (n = 30).

Standard error (number of cases deleted) Known item parameters Estimated item parameters
SD(0) ASE(0) HASE(0) N = 500 N = 1000

SD(1) ASE(1) HASE(1) SD(1) ASE(1) HASE(1)

θ = −1(0/1/0)
ML 0.379 0.356 0.374 0.379 0.361 0.378 0.393 0.359 0.376
BM 0.305 ∗ 0.300 0.309 ∗ 0.305 0.316 ∗ 0.302
WL 0.358 ∗ 0.360 0.360 ∗ 0.364 0.372 ∗ 0.362

θ = 0(0/3/0)
ML 0.302 0.296 0.303 0.326 0.299 0.305 0.305 0.298 0.304
BM 0.276 ∗ 0.276 0.297 ∗ 0.279 0.278 ∗ 0.278
WL 0.295 ∗ 0.297 0.319 ∗ 0.299 0.298 ∗ 0.298

θ = 1(0/1/0)
ML 0.325 0.312 0.326 0.335 0.317 0.330 0.347 0.314 0.328
BM 0.282 ∗ 0.281 0.291 ∗ 0.286 0.300 ∗ 0.284
WL 0.313 ∗ 0.314 0.324 ∗ 0.318 0.335 ∗ 0.316

θ = 2(33/2/2)
ML 0.457 0.423 0.448 0.485 0.433 0.458 0.461 0.428 0.453
BM 0.305 ∗ 0.227 0.317 ∗ 0.245 0.301 ∗ 0.236
WL 0.417 ∗ 0.431 0.439 ∗ 0.441 0.417 ∗ 0.436

Note. n = the number of items, N = the number of examinees when item parameters are estimated, SD(0) (SD(1)) = the standard deviation of θ̂

from simulations, ASE(0)
= (n−1β

(0)
2 )1/2,ASE(1)

= (n−1β̄2I )
1/2

= {n−1(β
(0)
2 + c̄β(∆)

2I )}1/2 = {(ASE(0))2 + n−1 c̄β(∆)
2I }

1/2,HASE(0)
= (n−1β

(0)
2 +

n−2β
(0)
H2 )1/2,HASE(1)

= (n−1β̄2I + n−2β
(0)
H2 )1/2 = {(HASE(0))2 + n−1 c̄β(∆)

2I }
1/2 , ML = maximum likelihood, BM = Bayes modal, WL = weighted

likelihood. The asterisks denote that the corresponding values by ML hold. (#1/#2/#3) indicates that #1, #2 and #3 cases for SD(0), SD(1) (N = 500) and
SD(0) (N = 1000) were deleted until 10,000, 1000, and 1000 regular cases were obtained in the simulations, respectively. Under c.m.s., β(0)

2 = β
(0)
2I = ī−1

θ0
.

Table 2
Simulated and asymptotic standard errors of θ̂ when the 2PLM holds, where the item parameters are known or estimated by MML (n = 50).

Standard error (number of cases deleted) Known item parameters Estimated item parameters
SD(0) ASE(0) HASE(0) N = 500 N = 1000

SD(1) ASE(1) HASE(1) SD(1) ASE(1) HASE(1)

θ = −1(0/0/0)
ML 0.334 0.330 0.334 0.364 0.333 0.337 0.345 0.331 0.335
BM 0.287 ∗ 0.279 0.312 ∗ 0.283 0.295 ∗ 0.281
WL 0.329 ∗ 0.331 0.359 ∗ 0.334 0.340 ∗ 0.333

θ = 0(0/0/0)
ML 0.280 0.270 0.275 0.304 0.272 0.277 0.287 0.271 0.276
BM 0.259 ∗ 0.255 0.281 ∗ 0.257 0.265 ∗ 0.256
WL 0.275 ∗ 0.270 0.300 ∗ 0.272 0.282 ∗ 0.271

θ = 1(0/0/0)
ML 0.270 0.263 0.268 0.289 0.266 0.270 0.274 0.264 0.269
BM 0.248 ∗ 0.245 0.264 ∗ 0.248 0.250 ∗ 0.246
WL 0.265 ∗ 0.263 0.284 ∗ 0.266 0.269 ∗ 0.265

θ = 2(0/1/0)
ML 0.348 0.326 0.345 0.389 0.333 0.352 0.391 0.329 0.349
BM 0.271 ∗ 0.259 0.295 ∗ 0.268 0.299 ∗ 0.263
WL 0.329 ∗ 0.329 0.368 ∗ 0.337 0.370 ∗ 0.333

Note. See the footnote of Table 1.

Table 3
Simulated and asymptotic standard errors of θ̂ when the 2PLM holds, where the item parameters are known or estimated by MML (n = 70).

Standard error (number of cases deleted) Known item parameters Estimated item parameters
SD(0) ASE(0) HASE(0) N = 500 N = 1000

SD(1) ASE(1) HASE(1) SD(1) ASE(1) HASE(1)

θ = −1(0/21/11)
ML 0.222 0.213 0.218 0.278 0.214 0.219 0.261 0.214 0.219
BM 0.206 ∗ 0.203 0.255 ∗ 0.204 0.238 ∗ 0.203
WL 0.217 ∗ 0.214 0.273 ∗ 0.215 0.256 ∗ 0.214

θ = 0(0/23/10)
ML 0.190 0.186 0.188 0.247 0.186 0.188 0.235 0.186 0.188
BM 0.183 ∗ 0.181 0.237 ∗ 0.182 0.224 ∗ 0.182
WL 0.188 ∗ 0.186 0.246 ∗ 0.186 0.233 ∗ 0.186

θ = 1(0/18/9)
ML 0.226 0.218 0.223 0.281 0.219 0.224 0.265 0.219 0.224
BM 0.209 ∗ 0.207 0.256 ∗ 0.208 0.242 ∗ 0.207
WL 0.222 ∗ 0.219 0.277 ∗ 0.220 0.261 ∗ 0.220

θ = 2(0/27/16)
ML 0.327 0.313 0.322 0.387 0.316 0.325 0.390 0.315 0.323
BM 0.259 ∗ 0.237 0.300 ∗ 0.242 0.297 ∗ 0.240
WL 0.318 ∗ 0.317 0.377 ∗ 0.320 0.379 ∗ 0.319

Note. See the footnote of Table 1.
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Table 4
Simulated and asymptotic standard errors of θ̂ when the 2PLM does not hold in estimating θ̂ , where the item parameters are known or estimated by MML,
while the 2PLM holds when the item parameters are estimated (n = 50).

Standard error under m.m. (# of cases deleted) Known item parameters Estimated item parameters
SD(0) ASE(0) HASE(0) N = 500 N = 1000

SD(1) ASE(1) HASE(1) SD(1) ASE(1) HASE(1)

θ = −1(0/4/0)
ML 0.326 0.322 0.325 0.341 0.329 0.331 0.347 0.325 0.328
BM 0.281 ∗ 0.272 0.292 ∗ 0.279 0.298 ∗ 0.276
WL 0.322 ∗ 0.322 0.337 ∗ 0.329 0.343 ∗ 0.326

θ = 0(0/4/0)
ML 0.259 0.252 0.257 0.275 0.257 0.261 0.271 0.254 0.259
BM 0.240 ∗ 0.238 0.254 ∗ 0.243 0.250 ∗ 0.241
WL 0.255 ∗ 0.253 0.271 ∗ 0.257 0.266 ∗ 0.255

θ = 1(0/2/0)
ML 0.246 0.243 0.247 0.268 0.248 0.252 0.264 0.246 0.249
BM 0.226 ∗ 0.226 0.245 ∗ 0.231 0.241 ∗ 0.229
WL 0.241 ∗ 0.243 0.264 ∗ 0.248 0.259 ∗ 0.245

θ = 2(0/2/0)
ML 0.312 0.297 0.311 0.350 0.306 0.320 0.353 0.301 0.315
BM 0.245 ∗ 0.231 0.269 ∗ 0.243 0.271 ∗ 0.237
WL 0.295 ∗ 0.297 0.332 ∗ 0.306 0.335 ∗ 0.301

Note. See the footnote of Table 1.

Table 5
Simulated standard errors of θ̂ when the 2PLM holds, where the item parameters are estimated by the Bayes method with the log-normal priors for
a-parameters.

Standard error by Bayes method (# of cases deleted) SD(1) , estimated item parameters
N = 500 N = 1000
n = 30 n = 50 n = 70 n = 30 n = 50 n = 70

θ = −1(0/1/7/0/0/10)
ML 0.379 0.353 0.271 0.392 0.339 0.259
BM 0.309 0.305 0.248 0.316 0.292 0.237
WL 0.361 0.348 0.266 0.372 0.335 0.254

θ = 0(0/1/13/0/0/11)
ML 0.328 0.296 0.235 0.306 0.283 0.233
BM 0.298 0.274 0.225 0.278 0.262 0.223
WL 0.321 0.292 0.233 0.299 0.278 0.231

θ = 1(0/0/6/0/0/11)
ML 0.337 0.282 0.266 0.349 0.270 0.264
BM 0.291 0.259 0.243 0.300 0.247 0.241
WL 0.325 0.278 0.262 0.336 0.265 0.259

θ = 2(2/2/11/2/0/16)
ML 0.485 0.372 0.377 0.462 0.383 0.389
BM 0.318 0.289 0.290 0.301 0.296 0.296
WL 0.442 0.353 0.367 0.420 0.363 0.378

Note. (#1/#2/#3/#4/#5/#6) indicates that these numbers of caseswere deleted under the six conditions in each line until regular 1000 caseswere obtained,
respectively. See also the footnote of Table 1.

Table 6
Simulated and asymptotic biases of θ̂ when the 2PLM holds, where the item parameters are known or estimated by MML (n = 50).

Bias Known item parameters Estimated item parameters
Sim. Th. N = 500 N = 1000

Sim. Th. Sim. Th.

θ = −1
ML −1.38 −1.11 −1.08 −0.10 −1.82 −0.60
BM 3.84 4.33 4.32 5.33 3.69 4.83
WL −0.21 0 0.07 1.00 −0.66 0.50

θ = 0
ML −0.51 −0.58 −0.85 −0.67 −0.48 −0.62
BM −0.40 −0.58 −0.71 −0.67 −0.37 −0.62
WL 0.05 0 −0.28 −0.10 0.09 −0.05

θ = 1
ML 0.45 0.38 1.85 −1.09 2.74 −0.36
BM −2.89 −3.08 −1.80 −4.55 −1.02 −3.81
WL 0.07 0 1.46 −1.47 2.34 −0.73

θ = 2
ML 2.00 1.76 4.26 −0.90 6.76 0.43
BM −8.11 −8.85 −6.65 −11.50 −4.73 −10.18
WL 0.06 0 2.26 −2.65 4.68 −1.33

Note. Sim. = n times the simulated bias, Th. = β̄1 (n times the theoretical or asymptotic bias). See also the footnote of Table 1.

by ASE(1) and HASE(1) are poor, although the HASE(1) values retain their relative sizes similar to the simulated ones among
the ML, BM, and WL estimators.
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Table 7
Simulated and asymptotic third cumulants of θ̂ when the 2PLM holds, where the item parameters are known or estimated by MML (n = 50).

Third cumulant Known item parameters Estimated item parameters
Sim. Th. N = 500 N = 1000

Sim. Th. Sim. Th.

θ = −1
ML −27.8 −24.0 −30.6 −25.7 −33.6 −24.9
BM −10.8 ∗ −8.3 ∗ −14.4 ∗

WL −23.5 ∗ −24.7 ∗ −29.1 ∗

θ = 0
ML −12.2 −8.4 −12.3 −8.6 −4.0 −8.5
BM −8.0 ∗ −7.8 ∗ −1.4 ∗

WL −12.1 ∗ −12.5 ∗ −4.2 ∗

θ = 1
ML 7.3 5.2 14.3 5.2 5.1 5.4
BM 3.6 ∗ 8.4 ∗ 1.6 ∗

WL 6.7 ∗ 13.2 ∗ 4.6 ∗

θ = 2
ML 60.1 37.2 122.2 38.8 72.6 38.8
BM 10.8 ∗ 20.9 ∗ 6.1 ∗

WL 44.1 ∗ 92.0 ∗ 52.4 ∗

Note. Sim. = n2 times the simulated third cumulant, Th. = β̄3 (n2 times the theoretical or asymptotic third cumulant). See also the footnote of Table 1.

Table 8
Simulated and asymptotic fourth cumulants of θ̂ when the 2PLM holds, where the item parameters are known or estimated by MML (n = 50).

Fourth cumulant Known item parameters Estimated item parameters
Sim. Th. N = 500 N = 1000

Sim. Sim.

θ = −1
ML 463 225 595 224
BM 80 ∗ −129 −20
WL 275 ∗ 278 69

θ = 0
ML 167 100 3 196
BM 89 ∗ −32 120
WL 167 ∗ 19 191

θ = 1
ML 130 73 239 189
BM 62 ∗ 136 107
WL 110 ∗ 209 165

θ = 2
ML 1660 813 5988 2742
BM 47 ∗ 405 1747
WL 1004 ∗ 4023 1828

Note. Sim. = n3 times the simulated fourth cumulant, Th. = β̄4 (n3 times the theoretical or asymptotic fourth cumulant). See also the footnote of Table 1.

Table 4 gives the results with n = 50 under m.m. when estimating ability. Although the values of the standard errors
are somewhat smaller than those in Table 2, similar results are found. The reduction of the values can be seen as a kind of
regression effect under m.m. [28].

Table 5 shows the simulated standard errors or SD(1) values when item parameters are estimated by the Bayes method
with log-normal priors for a-parameters. The values correspond to those in Tables 1–3. Note that the asymptotic values are
unchanged as far as those in the tables are concerned. It is seen that, when n = 30, the values are almost the same as in
Table 1, while, when n = 50 and 70, they are slightly smaller than those in Tables 2 and 3.

In Tables 6–8, the results of biases, the third cumulants, and the fourth ones independent of nwhen n = 50 under c.m.s.
are shown. In Table 8, the asymptotic fourth cumulantswith estimated itemparameters are not given, due to its complicated
formula under Condition A, while those common to the casewith known item parameters, and the cases based on estimated
item parameters under Conditions B and C, are shown. The tables show that the cumulants with estimated item parameters
are in a crude sense similar to those with known item parameters, with some exceptions for the BME in Table 8.

Table 9 gives the results with n = 50 when N is as small as 200, which is an inappropriate one for stable item calibration.
The Bayesian method for estimating item parameters is used, since, when MML was used, 4% or 5% of the cases had to
be discarded at each level of ability due mainly to non-convergence in the estimation of item parameters while only less
than 1% is discarded at each ability level in Table 9. It is found that the simulated and asymptotic standard errors have
not increased so much (compare with Tables 1 and 5). It is ironical that, when N is as small as 200, the ASE(1) values in
Table 9 are reasonable, especially when θ is not 0. Note that the set of sample sizes in Table 9 was also used by Hoshino and
Shigemasu [13, Fig. 1], with similar patterns repeated in Table 9. The results of bias in Table 9 does not correspond to those
in Table 6 given byMML, since ηα0

, due to the log-normal priors, influences the biases in Table 9, which seem to be different
from those in Table 6. The third and fourth cumulants in Table 9 are similar to the corresponding ones in Tables 7 and 8,
respectively.



H. Ogasawara / Journal of Multivariate Analysis 119 (2013) 144–162 157

Table 9
Simulated and asymptotic cumulants of θ̂ when the 2PLM holds, where the item parameters are estimated by the Bayes method with log-normal priors
for a-parameters and N is small (n = 50).

Small N , Bayes method (# of cases deleted) N = 200, estimated item parameters except ASE(0)

Standard error Bias Third cumulant Fourth cumulant
SD(1) ASE(1) ASE(0) HASE(1) Sim. Th. Sim. Th. Sim.

θ = −1(2)
ML 0.343 0.338 0.330 0.342 1.99 4.38 −31.4 −27.6 553
BM 0.300 ∗ ∗ 0.289 6.54 9.81 −13.0 ∗ 143
WL 0.338 ∗ ∗ 0.339 3.13 5.49 −26.2 ∗ 349

θ = 0(6)
ML 0.289 0.275 0.270 0.280 −0.69 −3.13 −8.7 −8.7 121
BM 0.269 ∗ ∗ 0.260 −0.58 −3.13 −5.4 ∗ 53
WL 0.286 ∗ ∗ 0.275 −0.17 −2.55 −8.7 ∗ 124

θ = 1(8)
ML 0.294 0.270 0.263 0.275 −1.45 −10.19 2.0 2.1 2
BM 0.271 ∗ ∗ 0.253 −4.55 −13.65 −0.5 ∗ −13
WL 0.289 ∗ ∗ 0.270 −1.82 −10.57 1.6 ∗ −4

θ = 2(8)
ML 0.365 0.344 0.326 0.362 −1.19 −16.71 64.3 30.2 2153
BM 0.292 ∗ ∗ 0.281 −10.55 −27.32 11.8 ∗ 247
WL 0.350 ∗ ∗ 0.347 −3.02 −18.47 49.4 ∗ 1524

Note. (#) indicates that the number # of cases were deleted until regular 1000 cases were obtained. Th. of bias= β̄1 , Th. of third cumulant= β̄3 , Sim. = the
simulated values corresponding to Th. independent of n. See also the footnote of Table 1.

[33, Tables A1 to A4] give the results for the studentized θ̂ , where new t∗α0
and îα0 are t∗ and î, respectively, with α̂

replaced by α0 and θ̂ being unchanged. In Table A1, HASE(t1)
= HASE(t0) is by construction. In Table A2, the studentization

for the MLE with known item parameters gives zero asymptotic bias [30, Corollary 1], and MLE = BME when θ = 0, since
ηθ = −θ = 0. In Tables A1 to A3, the values based on estimated item parameters are in a crude sense similar to those with
known item parameters, while, in Table A4, the simulated fourth cumulants of t are different between when N = 500 and
1000, indicating some instability for these cases.

The computer program for the asymptotic cumulants in the numerical illustration was coded in Fortran90. Though the
program is long, and is not necessarily user friendly, it is available upon request to the author for interested readers.

6. Concluding remarks

This paper gives the asymptotic cumulants up to the fourth order and the higher-order asymptotic variances of the ML,
Bayes, and pseudo Bayes modal estimators of ability when the item parameters used are estimated by MML and the Bayes
method under p.m.m. with and without studentization. Among them, so far, only the asymptotic bias with the assumption
of uncorrelated estimators of item parameters over different items and the asymptotic variance are known under Condition
A. While full results without using the assumption of uncorrelated estimators are given in this paper, the results of the
higher-order asymptotic variance and the fourth asymptotic cumulant are complicated under Condition A. On the other
hand, under Condition B (N = O(n3/2)) and Condition C (N = O(n2)), the results become extremely simple. That is, only the
higher-order asymptotic variances with estimated item parameters are different from those with known item parameters
under Conditions B and C as far as the asymptotic cumulants up to the fourth order and the higher-order asymptotic variance
are concerned.

Conditions B and C correspond to situationswhenN is relatively larger than nwith different orders, whichmay represent
typical situations in practice when item calibration is appropriately performed with large sample sizes. In many cases,
the estimation of ability has been carried out using the assumption of fixed item parameters though they are actually
estimated ones. Theorems 2 and 5 under Condition B, and Theorems 3 and 6 give asymptotic justification for these practices.
In Section 2.1, the condition N = O(n5/2) was mentioned as an unrealistic one. However, it can be shown that by this
assumption even the higher-order asymptotic variance based on estimated item parameters becomes equal to that with
known ones.

The relative effect of estimated item parameters on estimation of ability is large when n is large and when N is small. In
the numerical illustration shown earlierwith n = 50 andN = 500 and 1000, the relative effect of estimated itemparameters
was rather small. Recall that the differences between the ML, BM, and WL estimators are dominant in these cases. On the
other hand,when n is as large as 70withN = 500 and 1000, the relative contribution of estimated itemparameters becomes
substantial, where ASE(1) considering this sampling variation is still somewhat different from the simulated value. The last
poor behavior of ASE(1) of orderO(n1/2)may be partially explained by the slow convergence of the (higher-order) asymptotic
variances for α̂ (see e.g., [26, Table 1]).

As explained earlier, all the asymptotic cumulants require some expectations over 2n response patterns. The usual size
n of ability tests inhibits the calculation, requiring some imputation methods. While the use of asymptotic multivariate
normality for α̂ [52] in the imputation is convenient, it is to be noted that the asymptotic cumulants higher than the second
order, and the higher-order asymptotic variance under Condition A depend on the cumulants of the α̂ being higher than the
second-order ones (variances and covariances). The imputation method in this paper considers this property.
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An application of the asymptotic cumulants of the non-studentized estimator θ̂ is to improve the point estimator by, for
example, bias reduction. Under Conditions A–C, this can be done by using Theorems 1–3 as θ̂ − n−1 ˆ̄β1, θ̂ − n−1β̂

(0)
1 and

θ̂ − n−1β̂
(0)
1 , respectively, where ˆ̄β1 and β̂

(0)
1 are sample versions of β̄1 and β

(0)
1 , respectively. Note that the formulas under

Conditions B and C are identical.
On the other hand, the asymptotic cumulants of the studentized estimators, i.e. t and t∗, can be used for interval

estimation. Define Φ(zα∗) = 1 − α∗ (e.g., α∗
= 0.05), where Φ(·) is the cumulative distribution function of the standard

normal. Then, the endpoints of the two-sidedWald confidence interval (CI) of θ0 under Conditions A andB (C)with first-order

accuracy and asymptotic confidence level 1 − α∗ are θ̂ ± zα∗/2n−1/2 ˆ̄β
1/2

2I and θ̂ ± zα∗/2n−1/2 î−1/2, respectively. The second-
order and third-order accurate CIs can also be obtained, at least in principle, by using typically the Cornish–Fisher expansions
and sample versions of the asymptotic cumulants up to the fourth order and the higher-order asymptotic variance of the
studentized estimator, depending on the accuracy orders (see e.g., [29]).
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Appendix

A.1. Some known and derived results

A.1.1. A review of the estimation of ability based on estimated item parameters
Investigations on the estimation of ability based on fallible or estimated item parameters can be classified into several

groups: (a) the method of expected response function, (b) Bayesian estimation, (c) an application of pseudo ML estimation,
(d) logistic regression with estimated covariates, and (e) multiple imputation.

Group (a): Lewis [16] proposed the use of the expected response function (ERF), i.e., the posterior mean of the probability
of a correct response to an item given an ability level, which yields a new estimator of the ability based on the ERF. Lewis [17]
fully explained the abovemethodwith numerical illustration using the 1PLM.Mislevy,Wingersky, and Sheehan [25] derived
amethodusing the ERF,wheremultiple imputationwasused for estimation of the distribution of estimated itemparameters.

Group (b): The method in this group considers the simultaneous distribution of ability and item parameter estimators
in the Bayesian framework. Tsutakawa and Soltys [50] obtained an approximate mean and standard deviation of an ability
estimator when the posterior mean vector and variance–covariance matrix of estimated item parameters are given for the
2PLM. Tsutakawa and Johnson [48] gave an approximate mean and variance of the posterior distribution of ability based
on estimated item parameters for the 3PLM. Albert [1] obtained a posterior simultaneous distribution of ability and item
parameters using Gibbs sampling for the two-parameter normal ogive model. Patz and Junker [36] derived a method of
simultaneous estimation of ability and item parameters for the 2PLM using theMarkov chain Monte Carlo (MCMC) method.

Group (c): Pseudo ML (PML) estimation deals with two sets of parameters, where the first set of parameters is estimated
by a non-ML method, e.g., least squares and moment methods, and the second set, usually of primary interest, is estimated
by ML given the estimates in the first set. Gong and Samaniego [12, Eq. (2.6)] introduced PML estimation and derived the
asymptotic variance of the estimator of the second set (PMLE), when the asymptotic variance of the estimator of the first set
and the asymptotic covariance Σ12 of the estimator of the first set and the mean log-likelihood derivative of the PMLE are
given. Note that Σ12 = 0 when the non-ML estimation is asymptotically equal to the MLE. Parke [35, Eq. (2.1)] relaxed the
condition for Σ12 = 0 to any consistent estimators of the first set using the results of Pierce [37, Section 4]. The condition
Σ12 = 0 corresponds to the independent condition for ability and item parameter estimation employed in this paper, which
comes from two independent samples, one from item calibration and the other for ability estimation.

Yuan and Jennrich [53] generalized PML estimation using a generalized estimation equation, and obtained the asymptotic
distribution of the PMLE and its conditions. Hoshino and Shigemasu [13] gave the asymptotic variance of the ability estimator
based on estimated item parameters for the 1PLM, the 2PLM, and the 3PLM as an application of Parke’s [35] formula
mentioned above. Cheng and Yuan [9] rediscovered Hoshino and Shigemasu’s [13] result, and showed in the case of the
2PLM that the effect of estimated item parameters is relatively small in the central area of ability, i.e., around zero. The
results of Hoshino and Shigemasu [13, Fig. 1] also show a similar pattern, though they did not mention it. The results of the
current paper are seen as extensions of those of Hoshino and Shigemasu [13].

Group (d): Note that the situation of ability estimation based on logisticmodels can be seen as a special case of estimating
the unknown regression coefficient corresponding to ability, where the covariates are known or estimated item parameters.
Stefanski and Carroll [41] derived the asymptotic expansion for the regression coefficient and a method of asymptotic bias
correction when the covariates are subject to sampling variation. Zhang, Xie, Song, and Lu [55] gave a similar method for
the MLE and WLE of ability based on estimated item parameters for the 3PLM. Their result is based on the assumption that
the asymptotic covariances between item parameters of different items are zero, which is removed in the current paper.
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Let n∗ be the sample size in logistic regression, which corresponds to n, the number of items in the case of ability
estimation, and let N∗ be the sample size in estimating the values of covariates, which corresponds to N , the sample size for
item calibration. In logistic regression, as illustrated by Stefanski and Carroll [41], n∗ is much larger than N∗. This is opposite
in the case of ability estimation. They deal with the case ofO(n∗/N∗2) = O(1), while Stefanski [40] used amore extreme case
of O(n∗/N∗4) = O(1). Since these cases are unrealistic in ability estimation, the reversed conditions, i.e., O(n3/2/N) = O(1)
and O(n2/N) = O(1), are dealt with in the current paper.

Group (e): Recently, Yang, Hanson, and Cai [52] proposed a method of imputation with the assumption of asymptotic
multivariate normality for estimators of item parameters, which gave corrected values of estimates of ability, its asymptotic
variance, test information, and reliability with their approximate percentiles. They stress the points that their results are
not restricted to dichotomous models and that the non-zero asymptotic covariances between item parameter estimators of
different items are considered. Mislevy et al.’s [25] method in Group (a) can also be classified in this group.

A.1.2. Stochastic expansions of θ̂ under three conditions on the relative sample size
(a) Condition A: N = O(n).
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(b) Condition B: N = O(n3/2).
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(c) Condition C: N = O(n2).
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In the above results, the same notation is used under different conditions, for simplicity. The terms of orders
Op(n−1/2N−1/2), Op(N−1), and Op(N−3/2) are due to the fallible or estimated item parameters. The numbers of these terms
is the largest in Condition A and the smallest in Condition C.
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A.1.3. An expansion of ˆ̄β
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2I for t under Condition A
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where G0 is Ĝ, in which θ̂ and α̂ are replaced by θ0 and α0, respectively, but is still a stochastic quantity. Define

ETα0(G0) = 0G0 , Eα0(G0) = 0G0 = Iα0 , γG0
= v(0G0),

mG0 = v{G0 − ETα0(G0)} = v(G0) − γG0
= Op(N−1/2),

(A.5)

where Eα0(·) is defined similarly to Eθ0(·), and v(·) is the vectorizing operator taking the non-duplicated elements of a
symmetric matrix. Note that, since G0 is stochastic, β̄2G0 is stochastic.

Expanding β̄2G0 about G0 = Iα0 , it follows that
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For Subsections A.2 to A.6 of the appendix, see [33,34].
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