期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:173
Calibration estimation of semiparametric copula models with data missing at random
Article
Hamori, Shigeyuki1  Motegi, Kaiji1  Zhang, Zheng2 
[1] Kobe Univ, Grad Sch Econ, Kobe, Hyogo 6578501, Japan
[2] Renmin Univ China, Inst Stat & Big Data, Beijing 100080, Peoples R China
关键词: Calibration estimation;    Covariate balancing;    Missing at random (MAR);    Semiparametric copula model;   
DOI  :  10.1016/j.jmva.2019.02.003
来源: Elsevier
PDF
【 摘 要 】

This paper investigates the estimation of semiparametric copula models with data missing at random. The maximum pseudo-likelihood estimation of Genest et al. (1995) is infeasible if there are missing data. We propose a class of calibration estimators for the nonparametric marginal distributions and the copula parameters of interest by balancing the empirical moments of covariates between observed and whole groups. Our proposed estimators do not require the estimation of the missing mechanism, and they enjoy stable performance even when the sample size is small. We prove that our estimators satisfy consistency and asymptotic normality. We also provide a consistent estimator for the asymptotic variance. We show via extensive simulations that our proposed method dominates existing alternatives. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2019_02_003.pdf 581KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次