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a b s t r a c t

This paper investigates the estimation of semiparametric copula models with data
missing at random. The maximum pseudo-likelihood estimation of Genest et al. (1995)
is infeasible if there are missing data. We propose a class of calibration estimators for the
nonparametric marginal distributions and the copula parameters of interest by balancing
the empirical moments of covariates between observed and whole groups. Our proposed
estimators do not require the estimation of the missing mechanism, and they enjoy
stable performance even when the sample size is small. We prove that our estimators
satisfy consistency and asymptotic normality. We also provide a consistent estimator for
the asymptotic variance. We show via extensive simulations that our proposed method
dominates existing alternatives.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Copula models are a compelling tool for analyzing complex interdependence of multiple variables. A key characteristic
of copula models is that, as Sklar [51] proved, any multivariate joint distribution can be recovered by inputting univariate
marginal distributions to a correctly specified copula. The copula approach is capable of capturing a wide range of
interdependence among variables with relatively small computational burden. There is a vast and growing literature
applying copula models to economic and financial data, among others; see, e.g., [13,43], for extensive surveys and
[37,39–41,50] for more recent contributions.

Especially popular are semiparametric copula inference approaches, which involve nonparametric marginal distribu-
tions and parametric copulas. Genest et al. [14] proposed the widely used maximum pseudo-likelihood estimator for the
copula parameter. Chen and Fan [5] proposed pseudo-likelihood ratio tests for model selection. Chen and Fan [6] studied
the estimation of a class of copula-based semiparametric stationary Markov models.

Most papers in the copula literature, including Genest et al. [14], assume complete data. In practice, missing data
frequently appear in a broad range of research. In survey analysis, for example, respondents may refuse to report their
personal information such as age, education, gender, race, salary, and weight. A primitive way of handling missing data is
list-wise deletion, which picks individuals with complete data and treats them all equally. The list-wise deletion delivers
consistent inference if data are Missing Completely At Random (MCAR), where target variables Y i and their missing status
T i are independent of each other. Wang et al. [55] studied the estimation of Gaussian copulas under the MCAR condition.
Hasler et al. [24] studied estimation in vine copula models under the MCAR assumption and monotone non-response. In
practice, the MCAR condition is often violated, and in such a case list-wise deletion can deliver heavily biased estimators.
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It is therefore desirable to work under a more general assumption called Missing At Random (MAR), originally explored
by Rubin [49], where Y i and T i are independent of each other given some observed covariates X i. Ding and Song [11]
proposed an EM algorithm for estimating the Gaussian copula under the MAR condition. We are not aware of any
systematic study on the estimation of general copula models with data MAR, and we fill that gap.

Missing data problems have a close connection with survey sampling, where the parameter of interest is the population
total of a survey variable, while only a portion of response outcomes can be obtained. In survey sampling, population totals
of certain auxiliary variables can be accurately ascertained from census data. Survey statisticians use auxiliary information
in many ways to improve survey estimates, and calibration is one of the most popularly used techniques. Deville and
Särndal [10] originally proposed a class of calibration estimators to improve the estimation of finite population totals by
utilizing information from auxiliary data. A core insight of Deville and Särndal [10] is to make calibrated weights as close
as possible to the original sampling design weights under a given distance measure, subject to a set of constraints. The
calibration has been extensively studied in the survey sampling literature [3,9,29–31,33,34,36].

Applying calibration to missing data problems has attracted considerable research interest recently, and has brought
many interesting results [8,18–22,45,46,52]. Despite those close connections, there still exists a major difference between
survey sampling and missing data analysis: design weights are known in the former but not in the latter. Therefore,
existing work that applies calibration to missing data problems is forced to parameterize design weights (namely
propensity score functions). If the propensity score models are misspecified, the resulting estimators can be substantially
biased.

In causal inference with binary treatments, Chan et al. [2] recently proposed a novel estimation technique to estimate
the average treatment effects. They constructed a class of nonparametric calibration weights by balancing the moments
of covariates among treated, controlled, and combined groups. Their method bypasses an explicit specification of a
propensity score function. Moreover, calibration weights satisfy certain moment constraints in both finite and large
samples, so that extreme weights are unlikely to arise. As a result, the calibration estimation attains significantly better
finite-sample performance than other nonparametric approximation methods.

As is well known, causal inference with binary treatments is a variant of missing data problems since we can observe
one and only one of potential outcomes. Being motivated by such an intimate connection, we extend the maximum
pseudo-likelihood approach of Genest et al. [14] by adapting the calibration procedure of Chan et al. [2] in order to perform
semiparametric copula inference with data MAR. Our estimator satisfies consistency and asymptotic normality. We also
present a consistent estimator for the asymptotic variance of our estimator.

We show via extensive Monte Carlo simulations that our proposed estimator dominates existing alternatives. First,
the list-wise deletion leads to severe bias under the MAR condition. Second, the parametric approach based on a specific
functional form of propensity score suffers from substantial bias when the propensity score model is misspecified. Third,
nonparametric estimators of Hirano et al. [26] exhibit serious sensitivity to the dimension of the approximation sieve, K .
Our estimator achieves a remarkably sharp and stable performance compared with the other methods.

The remainder of this paper is organized as follows. In Section 2, we explain our notation and basic set-up. In Section 3,
we propose our estimator and study its large-sample properties. In Section 4, we present a nonparametric consistent
estimator for the asymptotic variance of our estimator. In Section 5, we propose a data-driven approach to determine the
tuning parameter K . In Section 6, we perform Monte Carlo simulations. In Section 7, we provide some concluding remarks.
Proofs of selected theorems are presented in technical appendices. Omitted proofs and complete simulation results are
collected in the Online Supplement [17].

2. Notation and basic framework

Consider a d-dimensional variable of interest Y i = (Y1i, . . . , Ydi)⊤, where d ≥ 2. Suppose that Y 1, . . . ,Y N form
a random sample from distribution F 0. The marginal distributions of F 0, denoted by F 0

1 , . . . , F
0
d , are assumed to be

continuous and differentiable. Sklar’s characterization theorem [51] ensures the existence of a unique copula C0 such
that F 0(y1, . . . , yd) = C0

{F 0
1 (y1), . . . , F

0
d (yd)} for all y1, . . . , yd ∈ R. Assume that this copula C0 has continuous partial

derivatives. Then f 0(y1, . . . , yd) = c0{F 0
1 (y1), . . . , F

0
d (yd)}f

0
1 (y1) · · · f

0
d (yd) for all y1, . . . , yd ∈ R , where f 0, f 0j , and c0 are

the density functions of F 0, F 0
j , and C0, respectively.

Genest et al. [14] pioneered the estimation of semiparametric copula models, here the copula belongs to a parametric
family, i.e., C0

∈ {C(·; θ ) : θ ∈ Rp
}, while the marginal distributions F 0

1 , . . . , F
0
d are left unspecified. See also [5,6,16] for

more results on semiparametric copula models. Genest et al. [14] proposed the maximum pseudo-likelihood estimator
for the target parameter θ , viz.

θ̃ = argmax
θ∈Θ

[
1
N

N∑
i=1

ln c{F̃1(Y1i), . . . , F̃d(Ydi); θ}
]
, (1)

where c(·; θ ) is the density of C(·; θ ), Θ is a compact subset of Rp containing the true value θ0, and for each j ∈ {1, . . . , d}
and y ∈ R,

F̃j(y) =
1

N + 1

N∑
i=1

1(Yji ≤ y)
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is a rescaled empirical marginal distribution.
Genest et al. [14] and most subsequent papers assume complete data. A main goal of this paper is to generalize

the maximum pseudo-likelihood estimator in (1), allowing for data missing at random. For each i ∈ {1, . . . ,N}, let
Y i = (Y⊤

i,obs,Y
⊤

i,mis)
⊤, where the component Y i,obs ∈ Rdobs is assumed to be always observed while the component

Y i,mis ∈ Rdmis may be missing, and d = dobs + dmis. Let T i = (T1i, . . . , Tdmis i)
⊤

∈ {0, 1}dmis be a binary random vector
indicating the missing status of Y i,mis = (Y1i,mis, . . . , Ydmisi,mis)⊤, namely, Tji = 0 (resp. Tji = 1) if Yji,mis is missing (resp.
observed).

If T i and Y i,mis are independent of each other, the latter is then called missing completely at random (MCAR). Under the
MCAR condition, an elementary approach of list-wise deletion, which merely picks individuals with complete observations
and puts equal weights on them, is well known to deliver consistent inference. The MCAR condition, however, is an
unrealistically strong assumption that is violated in many applications.

In this paper we impose a more realistic assumption called missing at random (MAR), which was put forward by
Rubin [49]. Let X i = (X1i, . . . , Xri)⊤ be an r-dimensional vector of data that are observable for all individuals i ∈ {1, . . . ,N},
where X i ⊃ Y i,obs and r ≥ dobs. The MAR condition assumes that T i and Y i,mis are independent of each other given
observed data X i.

Assumption 1 (Missing at Random). T i ⊥ Y i,mis|X i for all i ∈ {1, . . . ,N}.

The MAR condition has been used in econometrics and statistics to identify the parameter of interest [7,47]. The MAR
condition does not require the unconditional independence between T i and Y i,mis. In many applications T i and Y i,mis are
unconditionally correlated with each other through X i, and that violates MCAR but not MAR. To simplify notation without
losing generality, in the rest of this article we assume that Y i,obs = ∅ and Y i,mis = Y i, which means that all components
of Y i are possibly missing. Then dobs = 0, dmis = d, and 0 < Pr(Tji = 1) < 1 for all j ∈ {1, . . . , d}.

3. Weighted two-step estimation

We assume throughout the paper that the true copula parameter θ0 is a unique solution to

θ0 = argmax
θ∈Θ

E
[
ln c{F 0

1 (Y1i), . . . , F 0
d (Ydi); θ}

]
.

Using Assumption 1 and the law of iterated expectations, we can express θ0 as follows:

θ0 = argmax
θ∈Θ

E
[
E[ln c{F 0

1 (Y1i), . . . , F 0
d (Ydi); θ}|X i]

]
= argmax

θ∈Θ
E
[
E[ln c{F 0

1 (Y1i), . . . , F 0
d (Ydi); θ}|X i] × E[1(T1i = 1, . . . , Tdi = 1)/η(X i)|X i]

]
= argmax

θ∈Θ
E
[
E
[
1(T1i = 1, . . . , Tdi = 1) ln[c{F 0

1 (Y1i), . . . , F 0
d (Ydi); θ}]/η(X i)

⏐⏐X i
]]

= argmax
θ∈Θ

E
[
1(T1i = 1, . . . , Tdi = 1) ln[c{F 0

1 (Y1i), . . . , F 0
d (Ydi); θ}]/η(X i)

]
, (2)

where η(X i) = Pr(T1i = 1, . . . , Tdi = 1|X i) is called a propensity score function.
In view of (2), we propose the weighted maximum pseudo-likelihood estimator for θ as follows. First, we estimate

the marginal distributions F 0
1 , . . . , F

0
d by F̂1, . . . , F̂d, respectively. Second, we estimate the inverse probability weights

1/{Nη(X)}, denoted by q̂(X), and compute θ̂ via a sample version of (2), viz.

θ̂ = argmax
θ∈Θ

N∑
i=1

q̂(X i)1(T1i = 1, . . . , Tdi = 1) ln c{F̂1(Y1i), . . . , F̂d(Ydi); θ}.

The first step is elaborated in Section 3.1, and the second step is elaborated in Section 3.2.

3.1. Estimation of marginal distributions

Under Assumption 1, the marginal distribution F 0
j can be represented, for each j ∈ {1, . . . , d}, by

F 0
j (y) = E{1(Yji ≤ y)} = E

[
E{1(Yji ≤ y)|X i}

]
= E

[
E{1(Yji ≤ y)|X i} × E{Tji/πj(X i)|X i}

]
= E

[
E{1(Yji ≤ y) × Tji/πj(X i)|X i}

]
= E{1(Yji ≤ y)Tji/πj(X i)} (3)

for each j ∈ {1, . . . , d}, where πj(x) = Pr(Tji = 1|X i = x) is the propensity score function. If πj(x) were known, then it
would be straightforward to estimate F 0

j via a sample analogue of (3), defined for all y ∈ R, by

F̃j(y) =
1
N

N∑
i=1

Tji
πj(X i)

1(Yji ≤ y).
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This estimator is known as the inverse probability weighting (IPW) estimator [27]. Since πj(x) is unknown in practice, it
is typically estimated either parametrically [1,48] or nonparametrically [7,26]. Parametric methods are easy to implement,
but will lead to erroneous results if the propensity score model is misspecified. Nonparametric methods such as kernel or
sieve regression offer asymptotically robust estimators since they do not require the model assumption on the propensity
score, but their small-sample performance is notoriously poor.

3.1.1. Calibration weighting estimator
A key property of the propensity score πj(X) is that, for any integrable function u(X),

E{Tji × u(X i)/πj(X i)} = E {u(X i)} . (4)

The propensity score πj balances all moments of the covariates between the observed group and the whole group, and it
is characterized by the infinite moments condition (4). The calibration weights p̂1K (X), . . . , p̂dK (X) are supposed to satisfy
a sample analogue of (4), i.e., for all j ∈ {1, . . . , d},

N∑
i=1

Tjip̂ji(X i)uKj (X i) =
1
N

N∑
i=1

uKj (X i), (5)

where uKj (X) = (uKj1(X), . . . , uKjKj (X))⊤ is the known basis function with dimension Kj ∈ N. The functions uKj (X) are
called the approximation sieve and can be used to approximate any suitable functions u(X) arbitrarily well as Kj → ∞.
Popularly used sieve functions include power series, splines, and wavelets. See [4] for a thorough discussion.

We now define p̂ji(X i). Let D(v, v0) be a known distance measure that is continuously differentiable in v ∈ R, non-
negative, strictly convex in v, and D(v0, v0) = 0. The general idea of calibration put forward by Deville and Särndal [10]
is to minimize the distance between the final weights and a given vector of design weights subject to a fixed number of
moment constraints. Design weights (or inverse probability weights) are known in survey sampling, but not in missing
data analysis since they are (Tj1/πj(X1), . . . , TjN/πj(XN )) containing the unknown function 1/πj(X i).

Note that, although the function 1/πj(X i) is unknown in practice, the population mean of the total design weights is
equal to 1 since E{Tji/πj(X i)} = 1. This motivates us to construct our calibration weights Tj1 × Np1, . . . , TjN × NpN by
minimizing the distance from the population mean of the design weights (i.e., 1) subject to the constraints (5):

min
N∑
i=1

D(Tji × Npji, 1), subject to
N∑
i=1

TjipjiuKj (X i) =

N∑
i=1

uKj (X i)/N, (6)

where Kj → ∞ as N → ∞ yet with Kj/N → 0. Some remarks on (6) are in order.

Remark 1. The formulation (6) is conceptually different from the existing calibration methods in survey sampling.
The first important difference is that our proposed weights minimize a distance from the mean of the design weights,
whereas the original survey calibration estimators minimize a distance from the design weights themselves, which are
the unknown inverse propensity score weights for the evaluation problem. Hence, our formulation does not need the
parametric estimation of the unknown propensity score function.

Remark 2. The number of moment constraints is fixed in the conventional survey calibration, while Kj → ∞ as N → ∞

in our framework. Hellerstein and Imbens [25] showed that if the number of matching conditions is fixed, then an
empirical likelihood calibration estimator with misspecified design weights is generally inconsistent. The growing number
of moment conditions is necessary for removing asymptotic bias that is associated with misspecified design weights.

Remark 3. Since uKj (X i) contains a constant term, one of the constraints in (6) is Tj1pj1 + · · · + TjNpjN = 1. If we take
D(v, 1) = (v − 1)2, then the primal problem (6) reduces to finding the minimum-variance weights [56].

Remark 4. By minimizing the distance from their population mean, the dispersion of the resulting weights is well
controlled and we can avoid extreme weights. It is well known that extreme weights cause instability in the IPW estimator.

Note that D(Tji × Npji, 1) = Tji × D(Npji, 1) + (1 − Tji) × D(0, 1) and the second term does not depend on the variable
pji. The problem (6) is therefore equivalent to

min
N∑
i=1

TjiD(Npji, 1), subject to
N∑
i=1

TjipjiuKj (X i) =
1
N

N∑
i=1

uKj (X i), (7)

where Kj → ∞ as N → ∞ yet with Kj/N → 0. The problem (7) is a convex separable programming with linear
constraints. The dual problem, by contrast, is an unconstrained convex maximization problem. The latter enhances the
speed and stability of numerical optimization algorithms [53]. Hence we solve for the dual problem to compute calibration
weights.
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Let f (v) = D(1 − v, 1), and f ′(v) = ∂ f (v)/∂v. When Tji = 1, the dual solution of (7) is given by

p̂jK (X i) =
1
N
ρ ′

{λ̂⊤

jKuKj (X i)}, (8)

where ρ ′ is the first derivative of a strictly concave function ρ(v) = f {(f ′)−1(v)}+ v− v(f ′)−1(v) and λ̂jK ∈ RKj maximizes
the following concave objective function

ĜjK (λ) =
1
N

N∑
i=1

[Tjiρ{λ⊤uKj (X i)} − λ⊤uKj (X i)].

In view of the first-order condition of the dual problem, it is straightforward to verify that the solution to the dual problem
satisfies the linear constraints in primal problem (7).

The link between f (v) and ρ(v) is provided in Section 3 of the Online Supplement [17], where we show that the strict
convexity of D(·, 1) is equivalent to the strict concavity of ρ. Since the primal and dual problems lead to the same solution
and the latter is simpler to solve, we shall express the calibration estimator in terms of ρ.

The ρ function can be any increasing and strictly concave function. Some examples include ρ(v) = − exp(−v) for the
exponential tilting [32], ρ(v) = ln(1+v) for the empirical likelihood [42], ρ(v) = −(1−v)2/2 for the continuous updating
of the generalized method of moments [23], and ρ(v) = v − exp(−v) for the inverse logistic.

3.1.2. Large-sample properties
Let ∥ · ∥ be the Frobenius norm defined by ∥A∥ =

√
tr(AA⊤), where A is a real matrix. For any integer Kj ∈ N, let

ζ (Kj) = supx∈X ∥uKj (x)∥ be the supremum norm of approximation sieves uKj (x). In general, this bound depends on the
array of basis that is used. Newey [38] shows that ζ (Kj) ≤ CKj for orthonormal polynomials, and ζ (Kj) ≤ C

√
Kj for

B-splines, where C > 0 is a universal positive constant. The following conditions are sufficient to establish both L∞ and
L2-convergence rates of Np̂jK → 1/πj.

Assumption 2. The support of the covariate X , denoted by X , is a Cartesian product of r compact intervals.

Assumption 3. The smallest eigenvalue of E{uKj (X)uKj (X)⊤} is bounded away from zero uniformly in Kj.

Assumption 4. For any j ∈ {1, . . . , d}, the inverse propensity score 1/πj(x) is bounded above, i.e., there exists some
constant η1 such that 1 ≤ 1/πj(x) ≤ η1 < ∞ for all x ∈ X .

Assumption 5. There exists λjK in RKj and α > 0 such that supx∈X |(ρ ′)−1
{1/πjK (x)} − λ⊤

jKuKj (x)| = O(K−α
j ) as Kj → ∞.

Assumption 6. ζ (Kj)2K 4
j /N → 0 and

√
NK−α

j → 0.

Assumption 7. The function ρ defined on R is strictly concave and three times continuously differentiable. Moreover,
the range of ρ ′ contains [1, η1].

Assumption 2 restricts the covariates to be bounded. This condition is restrictive but convenient for computing the
convergence rate under L∞ norm. It is commonly imposed in the nonparametric regression literature. This condition can
be relaxed, however, if we restrict the tail distribution of X . Assumption 3, which is also imposed in [38], essentially
requires the sieve basis functions to be orthogonal. Assumption 4, a common condition in the missing data literature,
ensures that a sufficient portion of marginal data are observed. Assumption 5 requires the sieve approximation error
of ρ ′−1

{1/πj(x)} to shrink at a polynomial rate. This condition is satisfied for a variety of sieve basis functions [38]. For
example, if X is discrete, then the approximation error is zero for sufficient large Kj and in this case Assumption 5 is
satisfied with α = ∞. If some components of X are continuous, the polynomial rate depends positively on the smoothness
of ρ ′−1

{1/πj(x)} in continuous components and negatively on the number of the continuous components. We will show
that the convergence rate of the estimated weight function is bounded by this polynomial rate. Assumption 6, another
common assumption in nonparametric regression, restricts the smoothing parameter to balance the bias and variance.
Assumption 7 is a mild restriction on ρ and is satisfied by all important special cases considered in the literature.

Theorem 1. Under Assumptions 2–7, we have, for all j ∈ {1, . . . , d},

sup
x∈X

|Np̂jK (x) − 1/πj(x)| = Op{ζ (Kj)(K−α
j +

√
Kj/N)},∫

X
|Np̂jK (x) − 1/πj(x)|

2dFX (x) = Op(K−2α
j + Kj/N),

1
N

N∑
i=1

|Np̂jK (X i) − 1/πj(X i)|
2

= Op(K−2α
j + Kj/N).
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A proof of Theorem 1 is presented in Appendix A. A key step in the proof is to define an intermediate quantity p∗

jK (x),
which is the theoretical counterpart of p̂jK (x). We shall establish the convergence rates of Np∗

jK → 1/πj and Np̂jK → Np∗

jK ,
respectively, as N → ∞.

The calibration estimator of the marginal distribution F 0
j (y) is defined as

F̂j(y) =

N∑
i=1

Tjip̂jK (X i)1(Yji ≤ y).

The following smoothness condition is required to establish the large-sample behavior of F̂1, . . . , F̂d.

Assumption 8. For any j ∈ {1, . . . , d}, the conditional distribution function Fj(y|x) = Pr(Yji ≤ y|X i = x) is continuously
differentiable in x and is Lipschitz continuous in y.

Define the d-dimensional functions F̂ = (F̂1, . . . , F̂d)⊤ and F 0
= (F 0

1 , . . . , F
0
d )

⊤. The following theorem gives the
asymptotically equivalent linear expression for

√
N {F̂j(y) − F 0

j (y)} and the weak convergence result of
√
N (F̂ − F 0).

Theorem 2. Impose Assumptions 1–8. Then,

(i) supy∈R |
√
N {F̂j(y) − F 0

j (y)} −
∑N

i=1 ψj(Yji,X i, Tji; y)| = op(1)/
√
N for all j ∈ {1, . . . , d}, where

ψj(Yji,X i, Tji; y) = Tji1(Yji ≤ y)/πj(X i) − {Tji/πj(X i) − 1}Fj(y|X i) − F 0
j (y);

(ii)
√
N (F̂ − F 0) ⇝ Ψ , where ⇝ denotes weak convergence, Ψ is a d-dimensional Gaussian process with mean zero and

covariance function

Ω(y1, y2) = E{ψ(Y i,X i, T i; y1)ψ(Y i,X i, T i; y2)⊤},

and ψ(Y i,X i, T i; y) = (ψ1(Y1i,X i, T1i; y), . . . , ψd(Ydi,X i, Tdi; y))⊤.

See Appendix B for a sketched proof of Theorem 2. A complete proof is presented in Section 4 of the Online
Supplement [17] in order to save space. Several remarks on Theorem 2 are in order.

Remark 5. A key step toward proving Theorem 2 is decomposing
∑N

i=1{F̂j(y) − F 0
j (y) − ψj(Yji,X i, Tji; y)}/

√
N so that it

can be rewritten as the sum of asymptotically negligible terms. See Appendix B for this important decomposition.

Remark 6. In the proof of Theorem 2, we use a weighted least squares projection of the conditional distribution Fj(y|x)
onto the approximation basis uK (x), where ρ only appears in the weights of the projection and not in the approximation
basis. Our projection argument yields an asymptotically negligible residual term when the weights of the projection are
bounded from above and below, which was established under our regularity conditions.

Remark 7. If there are no missing data, namely Tji = 1 for all i ∈ {1, . . . ,N} and j ∈ {1, . . . , d}, then

√
N {F̂j(y) − F 0

j (y)} =
1

√
N

N∑
i=1

{1(Yji ≤ y) − F 0
j (y)}

becomes the usual empirical process, and it weakly converges to a Gaussian process by Donsker’s Theorem.

3.2. Estimation of the copula parameter

3.2.1. Consistency
In this section, we construct calibration weights which lead to consistent estimators for the inverse probability

1/{Nη(X i)}. We then obtain a consistent estimator for the target parameter θ0 in accordance with (2).
By definition, η(x) = Pr(T1i = · · · = Tdi = 1|X i = x) satisfies the following equation

E{1(T1i = · · · = Tdi = 1)u(X i)/η(X i)} = E{u(X i)}

for all integrable function u(X). Similar to p̂jK (X) in (7), we construct calibration weights q̂K (X) by solving the following
constrained optimization problem.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min
N∑
i=1

1(T1i = · · · = Tdi = 1)D(Nqi, 1),

subject to
N∑
i=1

1(T1i = · · · = Tdi = 1)qiuKη (X i) =
1
N

N∑
i=1

uKη (X i).

(9)
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Similar to (8), the dual solution of (9) is given by

q̂K (X i) =
1
N
ρ ′

{β̂⊤

K uKη (X i)} (10)

for values of i such that T1i = · · · = Tdi = 1, where β̂K maximizes the following concave objective function

ĤK (β) =
1
N

N∑
i=1

1(T1i = · · · = Tdi = 1)ρ{β⊤uKη (X i)} −
1
N

N∑
i=1

β⊤uKη (X i).

Recall that a complete derivation of the dual solution to (7) is provided in Section 3 of the Online Supplement [17]. Since
the dual solution to (9) can be derived similarly, the derivation is omitted.

Assumption 9. The smallest eigenvalue of E{uKη (X)uKη (X)⊤} is bounded away from zero uniformly in Kη .

Assumption 10. There exists some constant η1 > 0 such that 1 ≤ 1/η(x) ≤ η1 < ∞ for all x ∈ X .

Assumption 11. There exist βK ∈ RKη and α > 0 such that supx∈X |(ρ ′)−1
{1/η(x)} − β⊤

K uKη (x)| = O(K−α
η ) as Kη → ∞.

Assumption 12. ζ (Kη)2K 4
η /N → 0 and

√
N K−α

η → 0.

Assumptions 9–12 are natural counterparts of Assumptions 3–6, respectively, and they are used to establish the
convergence rate of Nq̂K → 1/η. Similar to Theorem 1, the following result holds.

Theorem 3. Under Assumptions 2, 7, 9–12, we have

sup
x∈X

|Nq̂K (x) − 1/η(x)| = Op{ζ (Kη)(Kη−α
+

√
Kη/N)},∫

X

⏐⏐Nq̂K (x) − 1/η(x)
⏐⏐2 dFX (x) = Op(Kη−2α

+ Kη/N),

1
N

N∑
i=1

⏐⏐Nq̂K (X i) − 1/η(X i)
⏐⏐2 = Op(Kη−2α

+ Kη/N).

A proof of Theorem 3 is similar to the proof of Theorem 1 due to the similarity between q̂K (x) and p̂jK (x). Hence we
refrain from presenting the proof of Theorem 3.

Finally, the proposed weighted maximum pseudo-likelihood estimator of θ0 is defined by

θ̂ = argmax
θ∈Θ

[
N∑
i=1

1(T1i = · · · = Tdi = 1)q̂K (X i) ln c{F̂1(Y1i), . . . , F̂d(Ydi); θ}

]
.

Assumption 13. Let Uji = F 0
j (Yji) and ℓ(v1, . . . , vd; θ ) = ln c(v1, . . . , vd; θ ).

(i) ℓ(v1, . . . , vd; θ ) is a continuous function of θ .
(ii) E{supθ∈Θ |ℓ(U1i, . . . ,Udi; θ )|} < ∞.

Assumption 13 is an envelope condition that is sufficient for the applicability of the uniform law of large numbers. It
is used for establishing the consistent estimation of θ̂ .

Theorem 4. Under Assumptions 1–13, we have θ̂
p

−→ θ0.

See Appendix C for a proof of Theorem 4.

3.2.2. Asymptotic normality
Recall that Uji = F 0

j (Yji) and ℓ(v1, . . . , vd; θ ) = ln c(v1, . . . , vd; θ ). Define U i = (U1i, . . . ,Udi)⊤, ℓθ (v1, . . . , vd; θ ) =

∂ℓ(v1, . . . , vd; θ )/∂θ , ℓθθ (v1, . . . , vd; θ ) = ∂2ℓ(v1, . . . , vd; θ )/(∂θ∂θ⊤), ℓj(v1, . . . , vd; θ ) = ∂ℓ(v1, . . . , vd; θ )/∂vj, as well as
ℓθ j(v1, . . . , vd; θ ) = ∂2ℓ(v1, . . . , vd; θ )/(∂θ∂vj). As in [5], we impose the following conditions in order to establish the
asymptotic normality of the proposed estimator θ̂ .

Assumption 14. E{ℓθ (U1i, . . . ,Udi; θ )|X i = x} is continuously differentiable in x.

Assumption 15. B = −E{ℓθθ (U1i, . . . ,Udi; θ0)} and Σ = var{ϕ(T i,X i,U i; θ0) +
∑d

j=1 Wj(Tji,X i,Uji; θ0)} are finite and
positive definite, where

ϕ(T i,X i,U i; θ0) = 1(T1i = · · · = Tdi = 1) ℓθ (U1i, . . . ,Udi; θ0)/η(X i)
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−1(T1i = · · · = Tdi = 1) E[ℓθ (U1i, . . . ,Udi; θ0)|X i]/η(X i)
+E{ℓθ (U1i, . . . ,Udi; θ0)|X i} − E{ℓθ (U1i, . . . ,Udi; θ0)},

Wj(Tji,X i,Uji; θ0) = E[ℓθ j(U1s, . . . ,Uds; θ0){φj(Tji,X i,Uji;Ujs) − Ujs}|Uji,X i, Tji]
for s ̸= i and, for all v ∈ [0, 1],

φj(Tji,X i,Uji; v) = Tji1(Uji ≤ v)/πj(X i) − TjiE{1(Uji ≤ v)|X i}/πj(X i) + E{1(Uji ≤ v)|X i}.

Assumption 16. (i) For each (u1, . . . , ud) ∈ (0, 1)d, ℓθθ (u1, . . . , ud; θ ) is continuous with respect to θ in a neighborhood
of θ0. (ii) E{supθ∈Θ:∥θ−θ0∥=o(1) ∥ℓθθ (U1i, . . . ,Udi; θ )∥} < ∞.

Assumption 17. For j ∈ {1, . . . , d}, ℓθ j(u1, . . . , ud; θ0) is well defined and continuous in (u1, . . . , ud) ∈ (0, 1)d.
Furthermore,

(i) ∥ℓθ (u1, . . . , ud; θ0)∥ ≤ constant ×
∏d

j=1{vj(1 − vj)}−aj for some aj ≥ 0 such that E
[∏d

j=1{Uji(1 − Uji)}−2aj
]
< ∞;

(ii) ∥ℓθk(u1, . . . , ud; θ0)∥ ≤ constant × {vk(1 − vk)}−bk
∏d

j=1,j̸=k{vj(1 − vj)}−aj for some bk > ak such that, for some
ξk ∈ (0, 1/2),

E

⎡⎣{Uki(1 − Uki)}ξk−bk
d∏

j=1,j̸=k

{Uji(1 − Uji)}−aj

⎤⎦ < ∞.

.

Assumption 14 controls the approximation error. Assumption 15 guarantees the finiteness of the asymptotic variance.
Assumption 16 guarantees the uniform convergence. Assumption 17 allows the score function and its partial derivatives
with respect to the first d arguments to blow up at the boundaries, which occurs for many popular copula families such
as Gaussian, Clayton, and t-copulas.

Theorem 5. Under Assumptions 1–17, we have
√
N (θ̂ − θ0) ⇝ N (0, V0), where V0 = B−1ΣB−1 and B and Σ are defined in

Assumption 15.

See Appendix D for a proof of Theorem 5. Admittedly, the calibration estimation does not exploit all available
information as sample units with some missing values are left aside. Hence our estimator is not an efficient estimator of
θ0 in general. Efficient estimation of θ0 is beyond the scope of this paper, and it will be pursued in future work.

We provide some remarks on Theorem 5.

Remark 8. The proof of Theorem 5 is basically in parallel with the proof of Proposition 2 in [5], but the latter rules
out missing data. An extra complexity brought by missing data is that we need a different asymptotic representation for√
N {F̂j(y) − F 0

j (y)}, which has been established in Theorem 2. Indeed, the large-sample behavior of
√
N (θ̂ − θ0) depends

on that of
√
N {F̂j(y) − F 0

j (y)}.

Remark 9. If there are no missing data, then V0 reduces to the asymptotic variance of the maximum pseudo-likelihood
estimator derived by Genest et al. [14]. See Section 5 of the Online Supplement [17] for a detailed verification.

Remark 10. The proposed estimator θ̂ is a semiparametric estimator which involves the nonparametric estimation of
marginal distributions. Our estimator would therefore suffer from the conventional issue of ‘‘curse of dimensionality’’ in
nonparametric estimation as the dimension of covariates X i is larger and larger. In Section 6.2.2, we perform simulation
experiments with r = 2 covariates, and find that our estimator has a much sharper performance than existing estimators.
An extension to high-dimensional X i is nontrivial and will be pursued in future work. An application of the sufficient
dimension reduction [28] seems to be an appealing solution.

4. Variance estimation

As shown in Theorem 4, the asymptotic variance of
√
N (θ̂−θ0) is given by V0 = B−1ΣB−1. In this section, we construct

consistent estimators for B and Σ , which leads to a consistent estimator for V0.
We first consider B. Using Assumption 1, B can be rewritten as

B = −E {1(T1i = 1, . . . , Tdi = 1) ℓθθ (U1i, . . . ,Udi; θ0)/η(X i)} .

Recall from Theorem 2 that F̂j is consistent for F 0
j . Also recall from Theorem 3 that Nq̂K (x) is consistent for 1/η(x). Hence

we define a plug-in estimator of B as

B̂ = −

N∑
i=1

1(T1i = 1, . . . , Tdi = 1)q̂K (X i)ℓθθ (Û1i, . . . , Ûdi; θ̂ ), (11)
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where

Ûji = F̂j(Yji) =

N∑
s=1

Tjsp̂jK (X s)1(Yjs ≤ Yji).

We next consider Σ . Under Assumption 1, Σ can be rewritten as

Σ = E

⎡⎢⎣1(T1i = 1, . . . , Tdi = 1)

⎧⎨⎩ϕ(T i,X i,U i; θ0) +

d∑
j=1

Wj(Tji,X i,Uji; θ0)

⎫⎬⎭
2 /

η(X i)

⎤⎥⎦ ,
where ϕ(T i,X i,U i; θ ) and Wj(Tji,X i,Uji; θ ) are defined in Assumption 15. As in (11), we can define plug-in estimators of
ϕ(T i,X i,U i; θ0) and Wj(Tji,X i,Uji; θ0) as

ϕ̂(T i,X i,U i; θ0) = 1(T1i = 1, . . . , Tdi = 1)Nq̂K (X i)ℓθ (Û1i, . . . , Ûdi; θ̂ )
−1(T1i = 1, . . . , Tdi = 1)Nq̂K (X i) × Ê{ℓθ (U1i, . . . ,Udi; θ0)|X i}

+Ê{ℓθ (U1i, . . . ,Udi; θ0)|X i} − Ê{ℓθ (U1i, . . . ,Udi; θ0)}

and

Ŵj(Tji,X i,Uji; θ0) =

N∑
s=1

1(T1s = 1, . . . , Tds = 1)q̂K (X s)ℓθ j(Û1s, . . . , Ûds; θ̂ ){φ̂j(Tji,X i,Uji; Ûjs) − Ûjs},

where

Ê{ℓθ (U1i, . . . ,Udi; θ0)|X i} =

{
N∑

s=1

1(T1s = · · · = Tds = 1)ℓθ (Û1s, . . . , Ûds; θ̂ )uℓ(X s)

}⊤

×

{
N∑
ℓ=1

1(T1ℓ = · · · = Tdℓ = 1)uℓ(X l)u⊤

ℓ (X l)

}−1

uℓ(X i)

is the least squares estimator of ℓθ (Û1i, . . . , Ûdi; θ̂ ) based on the basis uℓ(X i). Further,

Ê{ℓθ (U1i, . . . ,Udi; θ0)} =

N∑
s=1

1(T1s = · · · = Tds = 1)q̂K (X s)ℓθ (Û1s, . . . , Ûds; θ̂ )

φ̂j(Tji,X i,Uji; v) = Tji{Np̂jK (X i)}1(Ûji ≤ v)

−Tji{Np̂jK (X i)} × Ê{1(Uji ≤ v)|X i, Tji = 1} + Ê{1(Uji ≤ v)|X i, Tji = 1}

and

Ê{1(Uji ≤ v)|X i, Tji = 1} =

{
N∑

s=1

1(Tjs = 1)1(Ûjs ≤ v)uℓ(X s)

}⊤ {
N∑
ℓ=1

1(Tjℓ = 1)uℓ(Xℓ)u⊤

ℓ (X l)

}−1

uℓ(X i).

Under standard conditions in the nonparametric estimation literature such as Assumption 15.2 in [35] or assumptions
in [38], it is well-known that the least squares projection estimators are consistent. Then together with the facts Ûji

p
−→ Uji

and θ̂
p

−→ θ0, the following results hold:

sup
x∈X

|Ê{ℓθ (U1i, . . . ,Udi; θ0)|X i = x} − E{ℓθ (U1i, . . . ,Udi; θ0)|X i = x}|
p

−→ 0, (12)

sup
x∈X

|Ê{1(Uji ≤ v)|X i = x, Tji = 1} − E{1(Uji ≤ v)|X i = x, Tji = 1}|
p

−→ 0. (13)

Finally, construct an estimator for V0 as V̂ = B̂−1Σ̂ B̂−1. The following theorem establishes consistency as desired.

Theorem 6. Impose Assumptions 1–17 and assume that (12) and (13) hold, then we have ∥V̂ − V0∥
p

−→ 0.

See Section 6 of the Online Supplement [17] for a proof of Theorem 6.

5. Selection of tuning parameters

While our large-sample theory allows for a wide range of values for K1, . . . , Kd and Kη , a practical question is how to
choose those values. In this section, we present a data-driven approach that selects the optimal K ∗

j and K ∗
η in terms of
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covariate balancing. A natural estimator of the joint distribution of X i, using the whole group of individuals, is given by

F̂X (x) =
1
N

N∑
i=1

1(X1i ≤ x1, . . . , Xri ≤ xr ).

An alternative estimator using the observed group of individuals is given by

F̂X,Kj (x) =

N∑
i=1

Tjip̂jKj (X i)1(X1i ≤ x, . . . , Xri ≤ xr ),

which depends on Kj. In view of covariate balancing E{Tji1(X i ≤ x)/πj(X i)} = E{1(X i ≤ x)}, it is desired to select Kj such
that F̂X and F̂X,Kj are as close as possible. It is also desired to impose a penalty against having large Kj in order to avoid
over-fitting. Hence we propose to select Kj ∈ {1, . . . , K̄j} that minimizes a penalized L2 distance, viz.

dK (F̂X , F̂X,Kj ) =
1

N(1 − K 2
j /N)2

N∑
i=1

{F̂X (X i) − F̂X,Kj (X i)}2, (14)

where K̄j is a prespecified integer. The proposed approach is analogous to the generalized cross-validation in Section 15.2
of Li and Racine [35].

Similarly, we can compute a weighted distribution function of X i by using the weights q̂K (X i). Then, based on the
covariate balancing equation E{1(T1i = · · · = Tdi = 1)1(X i ≤ xi)/η(X i)} = E{1(X i ≤ xi)}, we can construct an empirical
criterion for selecting K ∗

η like (14). Our approach is admittedly ad-hoc since one could use other distance measures or
penalty terms. We, however, show in Section 6 that our approach achieves sharp performance in finite sample for both
the nonparametric estimator of Hirano et al. [26] and the calibration estimator.

6. Monte Carlo simulations

In this section, we run Monte Carlo simulations in order to evaluate the finite sample performance of the proposed
calibration estimator and other existing estimators. In Section 6.1, we investigate a benchmark scenario which has a
relatively simple structure. In Section 6.2, we investigate more involved scenarios for completeness.

6.1. Benchmark scenario

6.1.1. Simulation design
Suppose that Y i = (Y1i, Y2i)⊤ are bivariate target variables (i.e., d = 2) and Xi is a scalar covariate (i.e., r = 1). We

specify the joint distribution of Z i = (Y⊤

i , Xi)⊤ via two Archimedean copulas that are widely used in empirical applications.
The first copula is the trivariate Clayton copula with a scalar parameter α0, written as C3(α0). The second copula is the
trivariate Gumbel copula with a scalar parameter γ0, written as G3(γ0).

As implied by Examples 1 and 2 in [15], Kendall’s τ is given by τ = α0/(α0 +2) for C3(α0) and τ = 1−1/γ0 for G3(γ0).
We consider two cases of τ ∈ {0.45, 0.75}. Hence we set the true copula parameters to be (α0, γ0) = (1.636, 1.818) for
τ = 0.45 and (α0, γ0) = (6.000, 4.000) for τ = 0.75. There exists relatively weak association among {Y1i, Y2i, Xi} when
τ = 0.45 and relatively strong association when τ = 0.75.

Inputs to the copulas are u1 = F 0
1 (y1), u2 = F 0

2 (y2), and u3 = FX (x), where F 0
j is the marginal distribution function of

Yji and FX is the marginal distribution function of Xi. We use the standard Gaussian distribution for F 0
1 , F

0
2 , and FX . Since

the standard Gaussian distribution has a tractable inverse distribution function, it is straightforward to draw (Y1i, Y2i, Xi)
by first generating (U1i,U2i,U3i) from the copulas and then transforming them to Y1i = (F 0

1 )
−1(U1i), Y2i = (F 0

2 )
−1(U2i), and

Xi = F−1
X (U3i).

We next specify missing mechanisms. Assume for simplicity that Y1i is always observed and only Y2i can be missing
with conditional probability:

π2(xi) = Pr(T2i = 1 | Xi = xi) = 1/{1 + exp(a + bxi)}. (15)

It is common in the missing data literature to use the logistic function (15) to specify missing probability [44]. We consider
four cases for (a, b):

Case A: (a, b) = (−1.385, 0.000), under which MCAR holds and E(T2i) = 0.8.
Case B: (a, b) = (−1.430, 0.400), under which MAR holds and E(T2i) = 0.8.
Case C: (a, b) = (−0.405, 0.000), under which MCAR holds and E(T2i) = 0.6.
Case D: (a, b) = (−0.420, 0.400), under which MAR holds and E(T2i) = 0.6.

20% of the Y2is are missing on average in Cases A and B, since E(T2i) = 0.8. The crucial difference between the two cases
is that b = 0 (i.e., MCAR) in Case A while b ̸= 0 (i.e., MAR) in Case B. Under MCAR, the missing probability of Y2i does
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not depend on Xi although Y i is (nonlinearly) related with Xi via the copula. Under MAR, the missing probability of Y2i
depends on Xi and Y i is related with Xi via the copula. Similar structures apply for Cases C and D with a larger missing
probability; 40% of the Y2is are missing on average since E(T2i) = 0.6.

We draw J = 1000 Monte Carlo samples with sample size N ∈ {250, 500, 1000}. We consider several estimation
methods for comparison.

6.1.2. List-wise deletion
The first approach is semiparametric estimation with list-wise deletion. For each component j ∈ {1, 2}, we estimate

the marginal distribution by

F̂j(y) =
1

N∗ + 1

N∑
i=1

1(T1i = 1, T2i = 1)1(Yji < y), N∗
=

N∑
i=1

1(T1i = 1, T2i = 1).

We then compute the maximum likelihood estimator for the copula parameter based on the complete data. Taking the
Clayton copula as an example, the maximum likelihood estimator is defined as follows. (The Gumbel case can be treated
analogously.)

α̂ = arg max
α∈(0,∞)

[
N∑
i=1

1(T1i = 1, T2i = 1) ln c2{F̂1(Y1i), F̂2(Y2i); α}

]
,

where c2(u1, u2; α) is the probability density function of the bivariate Clayton copula C2(α). There is not a misspecification
problem here due to a well-known property that any bivariate marginal distribution of C3(α0) is indeed C2(α0). This
property holds for any Archimedean copula. It is a useful property when we perform simulations on copula models with
data MAR. Y i and Xi are associated with each other through a copula, and hence we can create a MAR situation using, say,
(15). Moreover, the unconditional distribution of Y i is tractable and hence we can compute the bias and related quantities
of a maximum likelihood estimator.

6.1.3. Parametric estimation
The second approach estimates the propensity score function π2(x) parametrically. Define

π2(x; a, b) = 1/{1 + exp(a + bx)}, (16)

then the log-likelihood function of (T21, X1), . . . , (T2N , XN ) is given by

ℓ(a, b) =

N∑
i=1

[T2i lnπ2(Xi; a, b) + (1 − T2i) ln{1 − π2(Xi; a, b)}].

Compute the maximum likelihood estimator (â, b̂), and then calculate p̂2(Xi) = q̂(Xi) = 1/{N × π2(Xi; â, b̂)}. Marginal
distributions are estimated as

F̂j(y) =

N∑
i=1

1(Tji = 1)p̂j(Xi)1(Yji < y) (17)

and the copula parameter is estimated as

α̂ = arg max
α∈(0,∞)

[
N∑
i=1

1(T1i = 1, T2i = 1)q̂(Xi) ln c2{F̂1(Y1i), F̂2(Y2i); α}

]
. (18)

Note that (16) is correctly specified relative to the true propensity score function (15). For comparison, we also use a
misspecified model

π2(x; a, b) = 1/{1 + exp(bx)}. (19)

Model (19) is misspecified since a ̸= 0 in each of Cases A–D. We are supposed to get consistent estimators when (16) is
used and inconsistent estimators when (19) is used.

6.1.4. Nonparametric estimation
The third approach estimates the propensity score function π2(x) nonparametrically based on [26]. To this end, define

π2K (Xi; λ) = 1/[1 + exp{−λ⊤uK2 (Xi)}], where uK2 (Xi) = (1, Xi, . . . , X
K2−1
i )⊤ is the approximation sieve also used in the

calibration estimation. The log-likelihood function of (T21, X1), . . . , (T2N , XN ) is written as

ℓ(λ) =

N∑
i=1

[T2i lnπ2K (Xi; λ) + (1 − T2i) ln{1 − π2K (Xi; λ)}].
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Table 1
Benchmark simulation results on Clayton copula with α0 = 6.000 (Kendall’s τ = 0.75).
MCAR with E(T2i) = 0.6

N = 250 N = 500 N = 1000
Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE

List-wise deletion −0.115, 0.754, 0.763 −0.046, 0.539, 0.541 −0.052, 0.379, 0.382
Param (correct) −0.442, 0.663, 0.797 −0.283, 0.464, 0.544 −0.172, 0.337, 0.378
Param (misspec) −1.687, 0.647, 1.807 −1.570, 0.456, 1.635 −1.470, 0.338, 1.509
Nonparam (K2 = 3) −0.369, 0.649, 0.747 −0.239, 0.482, 0.538 −0.151, 0.364, 0.394
Nonparam (K2 = 4) −0.630, 1.985, 2.083 −0.801, 1.945, 2.104 −0.921, 2.153, 2.342
Nonparam (CB) −0.307, 0.659, 0.727 −0.185, 0.481, 0.515 −0.116, 0.347, 0.366
Calibration (K2 = 3) −0.365, 0.648, 0.744 −0.245, 0.456, 0.517 −0.145, 0.307, 0.339
Calibration (K2 = 4) −0.304, 0.646, 0.714 −0.175, 0.460, 0.492 −0.130, 0.324, 0.349
Calibration (CB) −0.317, 0.643, 0.717 −0.213, 0.462, 0.509 −0.122, 0.319, 0.342

MAR with E(T2i) = 0.6

N = 250 N = 500 N = 1000
Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE

List-wise deletion 0.420, 0.840, 0.940 0.453, 0.594, 0.747 0.472, 0.408, 0.624
Param (correct) −0.248, 0.650, 0.696 −0.152, 0.454, 0.479 −0.089, 0.322, 0.334
Param (misspec) −1.367, 0.610, 1.497 −1.273, 0.420, 1.340 −1.194, 0.330, 1.239
Nonparam (K2 = 3) −0.248, 0.612, 0.661 −0.152, 0.434, 0.460 −0.057, 0.322, 0.327
Nonparam (K2 = 4) −0.495, 1.916, 1.978 −0.723, 2.358, 2.467 −0.972, 2.470, 2.654
Nonparam (CB) −0.167, 0.670, 0.691 −0.125, 0.452, 0.469 −0.062, 0.333, 0.338
Calibration (K2 = 3) −0.266, 0.605, 0.661 −0.161, 0.450, 0.477 −0.110, 0.322, 0.340
Calibration (K2 = 4) −0.274, 0.649, 0.705 −0.165, 0.456, 0.485 −0.092, 0.327, 0.340
Calibration (CB) −0.259, 0.653, 0.703 −0.142, 0.472, 0.493 −0.076, 0.315, 0.324

In this table we report bias, standard deviation, and root mean squared error (RMSE) of each estimator
with respect to α0 = 6.000 after J = 1000 Monte Carlo trials. ‘‘Param (correct)’’ signifies the
parametric estimator based on a correctly specified propensity score model. ‘‘Param (misspec)’’ signifies
the parametric estimator based on a misspecified propensity score model. ‘‘Nonparam’’ signifies the
nonparametric estimator of Hirano et al. [26]. ‘‘Calibration’’ signifies our proposed calibration estimator.
For the nonparametric and calibration estimators, approximation sieves are constructed from the power
series of Xi . The dimension of the approximation sieve is either fixed at K2 ∈ {3, 4} or automatically
selected from K2 ∈ {1, . . . , 5} based on the covariate balancing (CB) principle.

Compute the maximum likelihood estimator λ̂, and calculate p̂2K (Xi) = q̂K (Xi) = 1/{N × π2K (Xi; λ̂)}. Then use (17) and
(18) to complete the procedure.

The difference between the parametric and nonparametric approaches is that the former requires an explicit specifi-
cation of propensity score functions while the latter does not. The nonparametric approach, however, requires a selection
of K2. We use uK2 (Xi) = (1, Xi, X2

i )
⊤ (i.e., K2 = 3) and uK2 (Xi) = (1, Xi, X2

i , X
3
i )

⊤ (i.e., K2 = 4) in order to see how results
change across different values of K2. We also perform the data-driven selection of K ∗

2 with an upper bound K̄2 = 5 as
described in Section 5.

6.1.5. Calibration estimation
The fourth approach is our proposed calibration estimation. For the second component, we estimate the marginal

distribution by (17), where p̂2K (Xi) is given in (8). We then compute the maximum likelihood estimator for the copula
parameter from (18), where q̂K (Xi) is given in (10). As in the nonparametric approach, we use fixed K2 ∈ {3, 4} and the
data-driven selection of K ∗

2 with upper bound K̄2 = 5.

6.1.6. Simulation results
In Table 1, we report simulation results on the Clayton copula. To save space, we only present the most informative

results with α0 = 6.000 and Cases C–D. Those cases correspond to the larger values of copula parameter and missing
probability. Similarly, Table 2 reports results on the Gumbel copula with γ0 = 4.000 and Cases C–D. See Tables 1–6 of
the Online Supplement [17] for complete results including α0 = 1.636, γ0 = 1.818, and Cases A–B.

First, the list-wise-deletion estimator is consistent under MCAR and inconsistent under MAR, as expected. See, for
example, Table 1 with N = 1000. The bias of the list-wise-deletion estimator is −0.052 under MCAR and 0.472 under
MAR. In Table 2, we observe that similar results hold for the Gumbel copula; the bias is −0.007 under MCAR and −0.274
under MAR. Another interesting finding is that the list-wise deletion results in positive bias under the Clayton copula
and negative bias under the Gumbel copula. Those results are essentially a consequence of our simulation design and the
tail-dependence properties of the two copulas. See Section 7.1 of the Online Supplement [17] for a precise reason for the
positive bias under Clayton and the negative bias under Gumbel.

Second, the parametric approach produces extremely large bias for all cases when the propensity score model is mis-
specified. See, for example, the top half of Table 2, where the bias is {−2.593,−2.618,−2.621} for N ∈ {250, 500, 1000},
respectively. Those results confirm that the parametric approach utterly fails if the model is misspecified. Note also that,
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Table 2
Benchmark simulation results on Gumbel copula with γ0 = 4.000 (Kendall’s τ = 0.75).
MCAR with E(T2i) = 0.6

N = 250 N = 500 N = 1000
Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE

List-wise deletion 0.033, 0.374, 0.375 0.007, 0.266, 0.266 −0.007, 0.186, 0.186
Param (correct) −0.231, 0.307, 0.384 −0.113, 0.232, 0.258 −0.047, 0.168, 0.174
Param (misspec) −2.593, 0.249, 2.605 −2.618, 0.137, 2.622 −2.621, 0.088, 2.622
Nonparam (K2 = 3) −0.211, 0.293, 0.361 −0.113, 0.253, 0.277 −0.046, 0.178, 0.184
Nonparam (K2 = 4) −0.587, 0.960, 1.125 −0.631, 1.104, 1.271 −0.797, 1.239, 1.474
Nonparam (CB) −0.198, 0.311, 0.369 −0.080, 0.227, 0.240 −0.041, 0.162, 0.167
Calibration (K2 = 3) −0.075, 0.323, 0.332 −0.042, 0.232, 0.236 −0.026, 0.158, 0.160
Calibration (K2 = 4) −0.059, 0.336, 0.341 −0.037, 0.234, 0.237 −0.029, 0.167, 0.170
Calibration (CB) −0.062, 0.347, 0.352 −0.045, 0.240, 0.244 −0.018, 0.161, 0.162

MAR with E(T2i) = 0.6

N = 250 N = 500 N = 1000
Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE

List-wise deletion −0.243, 0.348, 0.424 −0.256, 0.244, 0.353 −0.274, 0.173, 0.324
Param (correct) −0.313, 0.323, 0.450 −0.153, 0.223, 0.271 −0.081, 0.158, 0.177
Param (misspec) −2.610, 0.204, 2.618 −2.620, 0.124, 2.623 −2.623, 0.082, 2.625
Nonparam (K2 = 3) −0.318, 0.315, 0.448 −0.165, 0.233, 0.285 −0.074, 0.172, 0.188
Nonparam (K2 = 4) −0.645, 0.923, 1.126 −0.682, 1.081, 1.278 −0.785, 1.233, 1.462
Nonparam (CB) −0.323, 0.308, 0.446 −0.140, 0.224, 0.264 −0.073, 0.164, 0.179
Calibration (K2 = 3) −0.140, 0.324, 0.353 −0.093, 0.234, 0.252 −0.058, 0.168, 0.177
Calibration (K2 = 4) −0.129, 0.342, 0.366 −0.094, 0.243, 0.260 −0.046, 0.163, 0.169
Calibration (CB) −0.142, 0.333, 0.362 −0.100, 0.240, 0.260 −0.064, 0.172, 0.183

In this table we report bias, standard deviation, and root mean squared error (RMSE) of each estimator
with respect to γ0 = 4.000 after J = 1000 Monte Carlo trials. ‘‘Param (correct)’’ signifies the
parametric estimator based on a correctly specified propensity score model. ‘‘Param (misspec)’’ signifies
the parametric estimator based on a misspecified propensity score model. ‘‘Nonparam’’ signifies the
nonparametric estimator of Hirano et al. [26]. ‘‘Calibration’’ signifies our proposed calibration estimator.
For the nonparametric and calibration estimators, approximation sieves are constructed from the power
series of Xi . The dimension of the approximation sieve is either fixed at K2 ∈ {3, 4} or automatically
selected from K2 ∈ {1, . . . , 5} based on the covariate balancing (CB) principle.

even if the model is correctly specified, the parametric approach can suffer from large bias in small sample. See again
the top half of Table 2, where the bias of the correctly-specified parametric estimator is {−0.231,−0.113,−0.047} for
N ∈ {250, 500, 1000}. Those values are in fact larger than the bias of the list-wise-deletion estimator. A potential reason
for the poor performance of the correctly-specified parametric estimator in small sample is that the propensity score
model is highly nonlinear in Xi.

Third, the performance of the nonparametric estimator is extremely sensitive to the choice of K2. When K2 = 3, the
performance of the nonparametric estimator is roughly comparable with the correctly-specified parametric estimator.
When K2 = 4, the nonparametric estimator is substantially biased for all cases. In the bottom half of Table 2, the bias
of the nonparametric estimator with K2 = 4 is {−0.645,−0.682,−0.785} for N ∈ {250, 500, 1000}, respectively. It
is a practical disadvantage that the nonparametric estimator exhibits a substantial variation across different values of
K2. The data-driven selection of K ∗

2 alleviates the sensitivity of the nonparametric estimator successfully. Focusing on
the sample example, the bias is now {−0.323,−0.140,−0.073} for N ∈ {250, 500, 1000}. (Another compelling way to
alleviate the sensitivity to K2 is reconstructing uK2 (X) via B-splines instead of power series. See Section 7.2 of the Online
Supplement [17] for extra simulations using B-splines.)

Fourth and most importantly, the calibration estimator shows a strikingly sharp and stable performance. The per-
formance of the calibration estimator remains almost the same whether K2 = 3, K2 = 4, or K ∗

2 is used, and
the bias and standard deviation are small enough for all cases. Robustness against different values of K2 is a great
advantage of the calibration estimator relative to the nonparametric estimator. When both nonparametric and calibration
estimators are assisted by the data-driven K ∗

2 , they perform as well as each other in many cases. Note, however, that
the calibration estimator with K ∗

2 clearly dominates the nonparametric estimator with K ∗

2 under the Gumbel copula
with N = 250 (Table 2); the bias of the calibration and nonparametric estimators is {−0.062,−0.198} under MCAR
and {−0.142,−0.323} under MAR, respectively. Overall, the benchmark simulation experiment highlights the superior
performance of the calibration estimator.

6.2. Extended scenarios

In the benchmark simulation, we found that the list-wise deletion fails under MAR and the parametric approach fails
when the model is misspecified. In this section, we make a further inspection of the nonparametric approach and the
calibration approach via more involved scenarios. In Section 6.2.1, we change the propensity score function so that the
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conditional probability of observing Y2i depends on not only Xi and but also Y1i. In Section 6.2.2, we assume that there
are r = 2 covariates.

6.2.1. Misspecified missing mechanism
We keep the benchmark set-up except for changing (15) as follows:

π2(xi, y1i) = Pr(T2i = 1 | Xi = xi, Y1i = y1i) = 1/{1 + exp(−0.42 + 0.2xi + 0.2y1i)}. (20)

As in Case D of the benchmark case, (20) implies MAR with E(T2i) = 0.6. A unique feature of (20) is that the propensity
score depends on not only Xi but also Y1i. This might challenge the nonparametric and calibration approaches when the
approximation sieves consist of the power series of Xi only.

Simulation results are shown in the top half of Table 3, where the true copula is Clayton with α0 = 6.000. Results
with C3(1.636), G3(1.818), and G3(4.000) are collected in Tables 11–14 of the Online Supplement [17] in order to save
space, and they yield qualitatively similar implications. Interestingly, adding Y1i to the propensity score does not have an
adverse impact on either the nonparametric estimator or the calibration estimator. When we choose K ∗

2 among {1, . . . , 5},
the two estimators are comparable for each sample size, and the larger sample size naturally leads to sharper inference.
When N = 1000, the bias is as small as −0.059 for the nonparametric estimator and −0.069 for the calibration estimator.
Those results suggest that, in our set-up, the extra impact of Y1i on the propensity score is well captured by the power
series of Xi. That is not a surprising result since Y1i and Xi are associated with each other through the copula.

The nonparametric estimator with K2 = 4 has a substantial bias, and its magnitude even increases as sample size
grows: −0.378, −0.686, and −0.827 for N ∈ {250, 500, 1000}, respectively. The calibration estimator, by contrast, always
exhibits stable performance across K2 ∈ {2, 3, 4}, and the bias diminishes as sample size grows. Taking K2 = 4 as
an example, the bias of the calibration estimator is {−0.218,−0.123,−0.068} for N ∈ {250, 500, 1000}. Those results
augment the benchmark simulation results that the calibration estimator is more stable than the nonparametric estimator.

In Section 7.3.1 of the Online Supplement [17], we provide further evidence of the high performance of the calibration
estimator by comparing it with two more estimators. The first one is the parametric estimator whose propensity score
model is correctly specified relative to (20). The second one is the calibration estimator whose approximation sieve
consists of power series of Xi and Y1i. Those estimators are expected to have sharp performances by construction.
Interestingly, the calibration estimator based on the power series of Xi performs as well as those two competitors in
terms of bias and standard deviation. See [17] for more details.

6.2.2. Two covariates
Revisit the benchmark scenario, and let r = 2 here in order to check the robustness of the nonparametric

and calibration estimators against large dimensionality. Specifically, we add the second covariate X2i whose marginal
distribution is the standard Gaussian. We draw U i = (Y1i, Y2i, X1i, X2i)⊤ jointly from a copula. The missing mechanism is
set to be π2(X i) = 1/{1 + exp(−0.42 + 0.2X1i + 0.2X2i)}. It is similar to Case D of the benchmark scenario in that the
missing mechanism is MAR with E(T2i) = 0.6. Note, however, that both covariates affect the conditional probability of
observing Y2i in the present scenario.

Since there are two covariates, we reconstruct the approximation sieve uK2 (X i). Define

u10(X i) = (1, X1i, X2i, X2
1i, X

2
2i, X1iX2i, X3

1i, X
3
2i, X

2
1iX2i, X1iX2

2i)
⊤.

For K2 ∈ {1, . . . , 10}, let uK2 (X i) be the first K2 elements of u10(X i). We use K2 = 3 (i.e., only the first moments of X i),
K2 = 6 (i.e., the second moments added), and K2 = 10 (i.e., the third moments added). We also use the data-driven K ∗

2
with a choice set K2 ∈ {1, . . . , 10}.

Simulation results are shown in the bottom half of Table 3, where the true copula is C4(6.000). Results with C4(1.636),
G4(1.818), and G4(4.000) are collected in Tables 15–16 of the Online Supplement [17] in order to save space, and
they yield qualitatively similar implications. The nonparametric estimator assisted by the data-driven K ∗

2 has small
bias but large variance. When N = 1000, the bias, standard deviation, and RMSE of the nonparametric estimator are
{−0.108, 1.265, 1.270}, respectively. The calibration estimator assisted by the data-driven K ∗

2 , by contrast, has small bias
and remarkably small variance. When N = 1000, the bias, standard deviation, and RMSE of the calibration estimator
are {−0.098, 0.346, 0.360}. Those results highlight that the calibration estimator is more robust against multivariate
covariates than the nonparametric estimator.

The calibration estimator keeps its high performance when fixed K2 ∈ {3, 6, 10} are used. The nonparametric estimator,
in contrast, is substantially biased when K2 = 10; the bias is {−0.929,−1.127,−1.579} for N ∈ {250, 500, 1000}. Those
results are consistent with the results of the benchmark simulation with a single covariate.

7. Conclusion

Copula models are a useful tool for capturing complex interdependence of multiple variables. Genest et al. [14]
proposed the maximum pseudo-likelihood estimator for semiparametric copula models. While there exists a vast
literature on copula models, most papers including [5,14] assume complete data. In this article, we propose a new
estimator for semiparametric copula models with data missing at random. We extend the maximum likelihood estimator
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Table 3
Extra simulation results on Clayton copula with α0 = 6.000 (Kendall’s τ = 0.75).
Scenario (1): misspecified missing mechanism

N = 250 N = 500 N = 1000
Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE

Nonparam (K2 = 2) −0.231, 0.637, 0.677 −0.121, 0.464, 0.479 −0.049, 0.339, 0.342
Nonparam (K2 = 3) −0.230, 0.622, 0.663 −0.134, 0.471, 0.490 −0.058, 0.338, 0.343
Nonparam (K2 = 4) −0.378, 2.650, 2.677 −0.686, 2.031, 2.144 −0.827, 2.395, 2.534
Nonparam (CB) −0.181, 0.641, 0.666 −0.140, 0.454, 0.475 −0.059, 0.327, 0.332

Calibration (K2 = 2) −0.290, 0.619, 0.683 −0.195, 0.458, 0.498 −0.125, 0.339, 0.362
Calibration (K2 = 3) −0.231, 0.641, 0.682 −0.148, 0.452, 0.475 −0.080, 0.313, 0.322
Calibration (K2 = 4) −0.218, 0.637, 0.674 −0.123, 0.463, 0.479 −0.068, 0.322, 0.330
Calibration (CB) −0.212, 0.628, 0.663 −0.147, 0.453, 0.476 −0.069, 0.323, 0.330

Scenario (2): two covariates

N = 250 N = 500 N = 1000
Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE

Nonparam (K2 = 3) −0.266, 0.626, 0.681 −0.150, 0.461, 0.484 −0.086, 0.324, 0.335
Nonparam (K2 = 6) −0.252, 0.688, 0.733 −0.160, 0.531, 0.554 −0.153, 0.476, 0.500
Nonparam (K2 = 10) −0.929, 2.725, 2.879 −1.127, 4.028, 4.183 −1.579, 3.013, 3.402
Nonparam (CB) −0.318, 0.671, 0.743 −0.106, 1.153, 1.158 −0.108, 1.265, 1.270

Calibration (K2 = 3) −0.308, 0.655, 0.724 −0.253, 0.458, 0.523 −0.178, 0.330, 0.375
Calibration (K2 = 6) −0.260, 0.619, 0.671 −0.147, 0.446, 0.470 −0.084, 0.331, 0.342
Calibration (K2 = 10) −0.265, 0.646, 0.698 −0.143, 0.455, 0.477 −0.076, 0.331, 0.340
Calibration (CB) −0.301, 0.619, 0.688 −0.200, 0.458, 0.500 −0.098, 0.346, 0.360

In this table we report bias, standard deviation, and root mean squared error (RMSE) of each estimator
with respect to α0 = 6.000 after J = 1000 Monte Carlo trials. In Scenario (1), the missing mechanism of
Y2i is specified as π2(Xi, Y1i) = 1/{1+exp(−0.42+0.2Xi+0.2Y1i)}. In Scenario (2), there are two covariates
X i = (X1i, X2i)⊤ , and the missing mechanism of Y2i is specified as π2(X i) = 1/{1+ exp(−0.42+ 0.2X1i +

0.2X2i)}. In both scenarios, the missing mechanism is MAR with E(T2i) = 0.6. ‘‘Nonparam’’ signifies the
nonparametric estimator of Hirano et al. [26]. ‘‘Calibration’’ signifies our proposed calibration estimator.
For both estimators, approximation sieves are constructed from the power series of covariate (s). In
Scenario (1), the dimension of the approximation sieve is either fixed at K2 ∈ {2, 3, 4} or automatically
selected from K2 ∈ {1, . . . , 5} based on the covariate balancing (CB) principle. In Scenario (2), the
dimension of the approximation sieve is either fixed at K2 ∈ {3, 6, 10} or automatically selected from
K2 ∈ {1, . . . , 10} based on the CB principle.

of Genest et al. [14] by adapting the calibration estimator of Chan et al. [2]. Under the MAR condition, our estimator
satisfies consistency and asymptotic normality. We also present a consistent estimator for the asymptotic variance of our
estimator. We show via extensive simulations that our proposed estimator dominates the list-wise deletion, parametric
estimators, and nonparametric estimators of Hirano et al. [26].
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Appendix A. Proof of Theorem 1

For a given sieve basis uKj (x), we can approximate a function fj : Rr
→ R by λ⊤uKj (x). For a non-degenerate matrix AKj ,

λ⊤uKj (X) = λ⊤A−1
Kj

AKjuKj (X) and hence we can also use ũKj (X) = AKjuKj (X) as a new basis for approximation. Specifically,
by choosing AKj = E{uKj (X)u⊤

Kj
(X)}−1/2, which is non-degenerate by Assumption 3, we can obtain a system of orthonormal

sieve basis ũKj (X). Without loss of generality, we assume the original sieve basis uKj (X) are orthonormal, viz.

E{uKj (X)u⊤

Kj (X)} = IKj . (A.1)
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Also let ζ (Kj) = supx∈X ∥uKj (x)∥. Above condition and notation are also adopted in [38]. For j ∈ {1, . . . , d}, we define the
theoretical counterparts of ĜjK (λ), λ̂jK , and p̂jK (x), viz.

G∗

jK (λ) = E{ĜjK (λ)} = E[πj(X i)ρ{λ⊤uKj (X i)} − λ⊤uKj (X i)], (A.2)

λ∗

jK = arg max
λ∈RKj

G∗

jK (λ), p∗

jK (x) =
1
N
ρ ′

{(λ∗

jK )
⊤uKj (x)}.

Theorem 1 is an immediate consequence of Lemmas A and B presented below.

A.1. Lemma A

Lemma A gives the approximation rate of the function 1/πj(x) by Np∗

jK (x).

Lemma A. Under Assumptions 2–7, we have, for any j ∈ {1, . . . , d},

sup
x∈X

|Np∗

jK (x) − 1/πj(x)| = O{ζ (Kj)Kj
−α

}, (A.3)

∫
X

|Np∗

jK (x) − 1/πj(x)|
2dFX (x) = O(Kj

−2α), (A.4)

1
N

N∑
i=1

|Np∗

jK (X i) − 1/πj(X i)|
2

= Op(Kj
−2α). (A.5)

Proof. We first prove (A.3). By Assumptions 4 and 7, 1/πj(x) ∈ [1, η1], and (ρ ′)−1 is strictly decreasing. We can thus
define two finite constants, viz.

γ = sup
x∈X

(ρ ′)−1
{1/πj(x)} ≤ (ρ ′)−1(1), γ = inf

x∈X
(ρ ′)−1

{1/πj(x)} ≥ (ρ ′)−1(η1).

By Assumption 5, there exist some constants C > 0 and λjK ∈ RKj such that supx∈X |(ρ ′)−1
{1/πj(x)} − λ⊤

jKuKj (x)| ≤ CKj
−α .

Then we have, for all x ∈ X ,

λ⊤

jKuKj (x) ∈

(
(ρ ′)−1

{1/πj(x)} − CKj
−α, (ρ ′)−1

{1/πj(x)} + CKj
−α

)
⊆ [γ − CKj

−α, γ + CKj
−α

] (A.6)

and for all x ∈ X ,

ρ ′
{λ⊤

jKuKj (x) + CKj
−α

} − ρ ′
{λ⊤

jKuKj (x)} < 1/πj(x) − ρ ′
{λ⊤

jKuKj (x)} < ρ ′
{λ⊤

jKuKj (x) − CK−α
j } − ρ ′

{λ⊤

jKuKj (x)}.

By the Mean Value Theorem, for large enough Kj, there exist

ξj1(x) ∈ (λ⊤

jKuKj (x), λ
⊤

jKuKj (x) + CK−α
j ) ⊆ [γ − CK−α

j , γ + 2CK−α
j ] ⊆ Γ1,

ξj2(x) ∈ (λ⊤

jKuKj (x) − CK−α
j , λ⊤

jKuKj (x)) ⊆ [γ − 2CK−α
j , γ + CK−α

j ] ⊆ Γ1 ,

such that

ρ ′
{λ⊤

jKuKj (x) + CK−α
j } − ρ ′

{λ⊤

jKuKj (x)} = ρ ′′
{ξj1(x)}CK−α

j ≥ −aCK−α
j ,

ρ ′
{λ⊤

jKuKj (x) − CK−α
j } − ρ ′

{λ⊤

jKuKj (x)} = −ρ ′′
{ξj2(x)}CK−α

j ≤ aCK−α
j ,

where Γ1 = [γ − 1, γ + 1] and a = supγ∈Γ1

⏐⏐ρ ′′(γ )
⏐⏐ = supγ∈Γ1

{
−ρ ′′(γ )

}
, because ρ ′′ < 0. Since Γ1 is compact and

independent of x, a is a finite constant. Therefore,

sup
x∈X

⏐⏐1/πj(x) − ρ ′
{λ⊤

jKuKj (x)}
⏐⏐ < aCK−α

j . (A.7)

By (A.1), (A.2) and (A.7), we can deduce that(G∗

jK )
′(λjK )

 =

E[πj(X)[ρ ′
{λ⊤

jKuKj (X)} − 1/πj(X)]uKj (X)
]

=
E [

πj(X){ρ ′
{λ⊤

jKuKj (X)} − 1/πj(X)}uKj (X)⊤
]
× E{uKj (X)uKj (X)⊤}

−1uKj (X)

L2

≤
πj(X)[ρ ′

{λ⊤

jKuKj (X)} − 1/πj(X)]

L2

≤
ρ ′

{λ⊤

jKuKj (X)} − 1/πj(X)

L2

≤ aCK−α
j , (A.8)

where the first inequality follows from the fact that

E
[
πj(X)[ρ ′

{λ⊤

jKuKj (X)} − 1/πj(X)]uKj (X)⊤
]
× E{uKj (X)uKj (X)⊤}

−1uKj (X)
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is the L2(dFX )-projection of πj(X)[ρ ′
{λ⊤

jKuKj (X)} − 1/πj(X)] on the space spanned by uKj (X).
For some fixed C2 > 0 (to be chosen later), define

ΛjK = {λ ∈ RKj : ∥λ− λjK∥ ≤ C2Kj
−α

}.

For sufficiently large Kj, by (A.6) and Assumption 6, we have, for all λ ∈ ΛjK and all x ∈ X ,

|λ⊤uKj (x) − λ⊤

jKuKj (x)| = |(λ− λjK )⊤uKj (x)| ≤ ∥λ− λjK∥ × ∥uKj (x)∥ ≤ C2Kj
−αζ (Kj),

which implies that for all λ ∈ ΛjK ,

λ⊤uKj (x) ∈ (λ⊤

jKuKj (x) − C2Kj
−αζ (Kj), λ⊤

jKuKj (x) + C2Kj
−αζ (Kj))

⊆

[
γ − CKj

−α
− C2Kj

−αζ (Kj), γ + CKj
−α

+ C2Kj
−αζ (Kj)

]
⊆ Γ1 . (A.9)

For any λ ∈ ∂ΛjK , i.e., ∥λ− λjK∥ = C2Kj
−α , using the Mean Value Theorem we can deduce that

G∗

jK (λ) − G∗

jK (λjK ) = (λ− λjK )⊤(G∗

jK )
′(λjK ) + (λ− λjK )⊤(G∗

jK )
′′(λ̄)(λ− λjK )/2

≤ ∥λ− λjK∥ × ∥(G∗

jK )
′(λjK )∥ + (λ− λjK )⊤E[πj(X)ρ ′′

{λ̄⊤uKj (X)}uKj (X)u⊤

Kj (X)](λ− λjK )/2

≤ ∥λ− λjK∥ × ∥(G∗

jK )
′(λjK )∥ − a1(λ− λjK )⊤E{uKj (X)u⊤

Kj (X)}(λ− λjK )/(2η1)

≤ ∥λ− λjK∥ × {aCKj
−α

− a1C2Kj
−α/(2η1)},

where λ̄ lies on the line joining from λ to λjK , a1 = infy∈Γ1{−ρ
′′(y)} > 0 is a finite positive constant, and the last inequality

follows from (A.8). By choosing C2 > 2aCη1/a1, we can obtain that G∗

jK (λ) < G∗

jK (λjK ) for any λ ∈ ∂ΛjK . Because G∗

jK (λ) is
continuous, there is a local maximum of G∗

jK in the interior of ΛjK . Furthermore, G∗

jK is a strictly concave function with a
unique global maximum point λ∗

jK , therefore we can claim λ∗

jK ∈ Λ◦

jK , i.e.,

∥λ∗

jK − λjK∥ ≤ C2Kj
−α. (A.10)

By the Mean Value Theorem, for large enough Kj, there exists ξ ∗(x) lying between (λ∗

jK )
⊤uKj (x) and λ

⊤

jKuKj (x). Then we have
ξ ∗(x) ∈ Γ1 by (A.9) and, for any x ∈ X ,

|ρ ′
{λ⊤

jKuKj (x)} − ρ ′
{(λ∗

jK )
⊤uKj (x)}| ≤ |ρ ′′

{ξ ∗(x)}| × ∥λjK − λ∗

jK∥ × ∥uKj (x)∥ ≤ a C2Kj
−αζ (Kj). (A.11)

Therefore, by (A.7) and (A.11) we have

sup
x∈X

⏐⏐1/πj(x) − ρ ′
{(λ∗

jK )
⊤uKj (x)}

⏐⏐ ≤ sup
x∈X

⏐⏐1/πj(x) − ρ ′
{λ⊤

jKuKj (x)}
⏐⏐ + sup

x∈X

⏐⏐ρ ′
{λ⊤

jKuKj (x)} − ρ ′
{(λ∗

jK )
⊤uKj (x)}

⏐⏐
≤ aCKj

−α
+ aC2Kj

−αζ (Kj) ≤ (aC + aC2)Kj
−αζ (Kj).

Next, we prove (A.4). Similarly, by (A.1), (A.7), (A.9), and (A.10), we can deduce that∫
X

⏐⏐πj(x)−1
− Np∗

jK (x)
⏐⏐2 dFX (x)

≤ 2
∫
X

|πj(x)−1
− ρ ′

{λ⊤

jKuKj (x)}|
2
dFX (x) + 2

∫
X

⏐⏐ρ ′
{λ⊤

jKuKj (x)} − ρ ′
{(λ∗

jK )
⊤uKj (x)}

⏐⏐2 dFX (x)
≤ 2 sup

x∈X
|πj(x)−1

− ρ ′
{λ⊤

jKuKj (x)}|
2
+ 2

∫
X

|ρ ′′
{ξ ∗(x)}|2 × |(λjK − λ∗

jK )
⊤uKj (x)|

2
dFX (x)

≤ 2 sup
x∈X

|πj(x)−1
− ρ ′

{λ⊤

jKuKj (x)}|
2
+ 2 sup

γ∈Γ1

|ρ ′′(γ )|2 × (λjK − λ∗

jK )
⊤

∫
X
uKj (x)uKj (x)

⊤dFX (x) × (λjK − λ∗

jK )

= 2 sup
x∈X

|πj(x)−1
− ρ ′

{λ⊤

jKuKj (x)}|
2
+ 2 sup

γ∈Γ1

|ρ ′′(γ )|2 × ∥λjK − λ∗

jK∥
2

= O(Kj
−2α) + O(1) × O(Kj

−2α) = O(Kj
−2α).

Finally, we prove (A.5). We can also obtain

1
N

N∑
i=1

⏐⏐πj(X i)−1
− Np∗

jK (X i)
⏐⏐2

≤
2
N

N∑
i=1

⏐⏐πj(X i)−1
− ρ ′

{λ⊤

jKuKj (X i)}
⏐⏐2 +

2
N

N∑
i=1

⏐⏐ρ ′
{λ⊤

jKuKj (X i)} − ρ ′
{(λ∗

jK )
⊤uKj (X i)}

⏐⏐2
=

2
N

N∑
i=1

⏐⏐πj(X i)−1
− ρ ′

{λ⊤

jKuKj (X i)}
⏐⏐2 +

2
N

N∑
i=1

⏐⏐ρ ′′
{ξ ∗(X i)}⊤(λjK − λ∗

jK )uKj (X i)
⏐⏐2
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≤ 2 sup
x∈X

⏐⏐πj(x)−1
− ρ ′

{λ⊤

jKuKj (x)}
⏐⏐2 + 2 sup

γ∈Γ1

|ρ ′′(γ )|2 × (λjK − λ∗

jK )
⊤

{
1
N

N∑
i=1

uKj (X i)uKj (X i)⊤
}
(λjK − λ∗

jK )

≤ 2 sup
x∈X

⏐⏐πj(x)−1
− ρ ′

(
λ⊤

jKuKj (x)
)⏐⏐2 + 2 sup

γ∈Γ1

|ρ ′′(γ )|2 × λmax

{
1
N

N∑
i=1

uKj (X i)uKj (X i)⊤
}

∥λjK − λ∗

jK∥
2

= O(Kj
−2α) + O(1) × Op(1) × O(Kj

−2α) = Op(Kj
−2α),

where λmax(A) denotes the largest eigenvalue of a matrix A; the second equality follows from (A.7), (A.10) and the fact
that λmax{N−1 ∑N

i=1 uK (X i)uKj (X i)⊤}
p

−→ λmax{E[uKj (X)uKj (X)⊤]} < ∞ because

E

⎡⎣ 1
N

N∑
i=1

uKj (X i)uKj (X i)⊤ − E{uKj (X)uKj (X)⊤}


2
⎤⎦ = E

[uKj (X)uKj (X)⊤ − E{uKj (X)uKj (X)⊤}
2

]
/N

= E
[
tr{uKj (X)uKj (X)⊤uKj (X)uKj (X)⊤}

]
/N − tr

[
E{uKj (X)uKj (X)⊤} × E{uKj (X)uKj (X)⊤}

]
/N

≤ ζ (Kj)2E{∥uKj (X)∥2
}/N = ζ (Kj)2Kj/N → 0, (A.12)

where the last line is justified by Assumption 6. Thus the proof of Lemma A is complete. □

A.2. Lemma B

Lemma B gives the approximation rate of Np∗

jK (x) by Np̂jK (x).

Lemma B. Under Assumptions 2–7, we have, for all j ∈ {1, . . . , d},

∥λ̂jK − λ∗

jK∥ = Op(
√
Kj/N), (A.13)

sup
x∈X

|Np̂jK (x) − Np∗

jK (x)| = Op{ζ (Kj)
√
Kj/N}, (A.14)

∫
X

|Np̂jK (x) − Np∗

jK (x)|
2dFX (x) = Op(Kj/N), (A.15)

1
N

N∑
i=1

|Np̂jK (X i) − Np∗

jK (X i)|
2

= Op(Kj/N). (A.16)

Proof. First we prove (A.13). Define ŜjN =
∑N

i=1 TjiuKj (X i)uKj (X i)⊤/N . Obviously, ŜjN is a symmetric matrix and E(ŜjN ) =

E{πj(X)uKj (X)u⊤

Kj
(X)}. We have

E
[
∥ŜjN − E{πj(X)uKj (X)u⊤

Kj (X)}∥2
]

= tr
[
E(ŜjN ŜjN ) − 2E(ŜjN ) × E{πj(X)uKj (X)u⊤

Kj (X)} + E{πj(X)uKj (X)u⊤

Kj (X)}E{πj(X)uKj (X)u⊤

Kj (X)}
]

and the right-hand side can be expanded as follows:

tr

⎡⎣E

{
1
N2

N∑
i=1

T 2
ji uK (X i)u⊤

Kj (X i)uKj (X i)u⊤

Kj (X i)

}
+ E

⎧⎨⎩ 1
N2

N∑
i,k=1,i̸=k

TjiTjkuKj (X i)u⊤

Kj (X i)uKj (X j)u⊤

Kj (X j)

⎫⎬⎭
−E{πj(X)uKj (X)u⊤

Kj (X)}E{πj(X)uKj (X)u⊤

Kj (X)}
]

=
1
N

E{πj(X)uKj (X)⊤uKj (X)uKj (X)⊤uKj (X)} −
1
N

tr
[
E{πj(X)uKj (X)u⊤

Kj (X)} × E{πj(X)uKj (X)u⊤

Kj (X)}
]
.

Therefore,

E
[
∥ŜjN − E{πj(X)uKj (X)u⊤

Kj (X)}∥2
]

≤ ζ (Kj)2Kj/N, (A.17)

given that u⊤

Kj
(X)uKj (X) = ∥uKj (X)∥2

≤ ζ (Kj)2, 1/η1 < πj(x) < 1, and E{u⊤

Kj
(X)uKj (X)} = Kj. Consider the event

EjN =

{
(λ− λ∗

jK )
⊤ŜjN (λ− λ∗

jK ) > (λ− λ∗

jK )
⊤

[
E{πj(X)uKj (X)u⊤

Kj (X)} −
1

2η1
IKj

]
(λ− λ∗

jK ), λ ̸= λ∗

jK

}
.
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By Chebyshev’s inequality and (A.17), we have

Pr
[⏐⏐⏐(λ− λ∗

jK )
⊤ŜjN (λ− λ∗

jK ) − (λ− λ∗

jK )
⊤E{πj(X)uKj (X)u⊤

Kj (X)}(λ− λ∗

jK )
⏐⏐⏐ ≥

1
2η1

∥λ− λ∗

jK∥
2, λ ̸= λ∗

jK

]
≤ 4η21∥λ− λ∗

jK∥
4E

[
∥ŜjN − E{πj(X)uKj (X)u⊤

Kj (X)}∥2
]
/∥λ− λ∗

jK∥
4

≤ 4η21ζ (Kj)2Kj/N.

Hence, for any ϵ > 0, there exists N0(ϵ) ∈ N such that for N > N0(ϵ) large enough

Pr{(EjN )∁} < ϵ/2. (A.18)

By definition, λ∗

jK is the unique maximizer of G∗

jK (λ). Thus,

(G∗

jK )
′(λ∗

jK ) = E
[
[πj(X)ρ ′

{(λ∗

jK )
⊤uKj (X)} − 1]uKj (X)

]
= E

[
[Tjiρ ′

{(λ∗

jK )
⊤uKj (X i)} − 1]uKj (X)

]
= 0.

Note that Ĝ′

jK (λ
∗

jK ) =
∑N

i=1[Tjiρ
′
{(λ∗

jK )
⊤uKj (X i)} − 1]uKj (X i)/N . Then for large Kj we have

E{∥Ĝ′

jK (λ
∗

jK )∥
2
} = E{Ĝ′

jK (λ
∗

jK )
⊤ĜjK (λ∗

jK )} =
1
N

E
[
[Tjiρ ′

{(λ∗

jK )
⊤uKj (X i)} − 1]2uK (X i)⊤uKj (X i)

]
+

N − 1
N

× 0

≤
1
N

E
[
[2 + 2|ρ ′

{(λ∗

jK )
⊤uKj (X i)}|

2
]uKj (X i)⊤uKj (X i)

]
≤ C2

4 E{uKj (X i)⊤uKj (X i)}/N = C2
4 × Kj/N, (A.19)

where the second equality holds since E{Ĝ′

jK (λ
∗

jK )} = (G∗

jK )
′(λ∗

jK ) = 0 and C4 = {2 sup γ∈Γ1 |ρ
′(γ )|2 + 2}1/2 is a finite

constant.
Let ϵ > 0, fix C5(ϵ) > 0 (to be chosen later), and define

Λ̂jK (ϵ) = {λ ∈ RKj : ∥λ− λ∗

jK∥ ≤ C5(ϵ)C4
√
Kj/N}.

For all λ ∈ Λ̂jK (ϵ) and all x ∈ X , and large enough N , by (A.9) and Assumption 6 we have

|λ⊤uKj (x) − (λ∗

jK )
⊤uKj (x)| ≤ ∥λ− λ∗

jK∥ × ∥uKj (x)∥ ≤ C5(ϵ)C4
√
Kj/N ζ (Kj) ⇒

λ⊤uKj (x) ∈

[
(λ∗

jK )
⊤uKj (x) − C5(ϵ)C4ζ (Kj)

√
Kj/N, (λ∗

jK )
⊤uKj (x) + C5(ϵ)C4ζ (Kj)

√
Kj/N

]

⊆

[
γ − CKj

−α
− C2Kj

−αζ (Kj) − C5(ϵ)C4ζ (Kj)
√
Kj/N, γ + CKj

−α
+ C2Kj

−αζ (Kj) + C5(ϵ)C4ζ (Kj)
√
Kj/N

]
⊆ Γ2(ϵ), (A.20)

where Γ2(ϵ) = [γ − 1 − C5(ϵ), γ + 1 + C5(ϵ)] is a compact set and independent of x.
By the Mean Value Theorem, for any λ ∈ ∂Λ̂jK (ϵ), there exists λ̄ that lies on the line joining from λ to λ∗

jK such that

ĜjK (λ) = ĜjK (λ∗

jK ) + (λ− λ∗

jK )
⊤Ĝ′

jK (λ
∗

jK ) + (λ− λ∗

jK )
⊤Ĝ′′

jK (λ̄)(λ− λ∗

jK )/2. (A.21)

Considering the second order term of (A.21), by (A.20) we have, for large enough N ,

(λ− λ∗

jK )
⊤Ĝ′′

jK (λ̄)(λ− λ∗

jK ) =
1
N

N∑
i=1

Tjiρ ′′
{λ̄⊤uKj (X i)}(λ− λ∗

K )
⊤uKj (X i)uKj (X i)⊤(λ− λ∗

jK )

≤ −b̄(ϵ)
1
N

N∑
i=1

Tji(λ− λ∗

jK )
⊤uKj (X i)uKj (X i)⊤(λ− λ∗

jK ) = −b̄(ϵ) × (λ− λ∗

jK )
⊤ŜjN (λ− λ∗

jK ), (A.22)

where −b̄(ϵ) = sup γ∈Γ2(ϵ)ρ
′′(γ ) is negative and finite since Γ2(ϵ) is a compact set and ρ is a concave function. Then on

the event Ej,N with large enough N , we have, for all λ ∈ ∂Λ̂jK (ϵ),

ĜjK (λ) − ĜjK (λ∗

jK ) = (λ− λ∗

jK )
⊤Ĝ′

jK (λ
∗

jK ) + (λ− λ∗

jK )
⊤Ĝ′′

jK (λ̄)(λ− λ∗

jK )/2

≤ ∥λ− λ∗

jK∥ × ∥Ĝ′

jK (λ
∗

jK )∥ − b̄(ϵ)(λ− λ∗

jK )
⊤ŜjN (λ− λ∗

jK )/2

≤ ∥λ− λ∗

jK∥ × ∥Ĝ′

jK (λ
∗

jK )∥ − b̄(ϵ)(λ− λ∗

jK )
⊤

[
E{πj(X)uKj (X)u⊤

Kj (X)} −
1

2η1
IKj

]
(λ− λ∗

jK )/2

≤ ∥λ− λ∗

jK∥ × ∥Ĝ′

jK (λ
∗

jK )∥ − b̄(ϵ)(λ− λ∗

jK )
⊤

(
1
η1

IKj −
1

2η1
IK

)
(λ− λ∗

jK )/2
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= ∥λ− λ∗

jK∥

{
∥Ĝ′

jK (λ
∗

jK )∥ −
b̄(ϵ)
4η1

∥λ− λ∗

jK∥

}
, (A.23)

where the first inequality follows from (A.22). By Chebyshev’s inequality and (A.19), for sufficiently large N ,

Pr
{
∥Ĝ′

jK (λ
∗

jK )∥ ≥
b̄(ϵ)
4η1

∥λ− λ∗

jK∥

}
≤

16η21
b̄(ϵ)2C2

5 (ϵ)
≤ ϵ/2, (A.24)

where the last inequality holds by choosing C5(ϵ) ≥ 4η1b(ϵ)−1√2/ϵ. Therefore, for sufficiently large N , by (A.18) and
(A.24) we can derive

Pr
{
(EjN )∁ or ∥Ĝ′

jK (λ
∗

jK )∥ ≥
b̄(ϵ)
4η1

∥λ− λ∗

jK∥

}
≤ ϵ/2 + ϵ/2 = ϵ ⇒

Pr
{
EjN and ∥Ĝ′

jK (λ
∗

jK )∥ <
b̄(ϵ)
4η1

∥λ− λ∗

jK∥

}
> 1 − ϵ. (A.25)

Then by (A.23) and (A.25), for sufficiently large N we can get

Pr{∀λ∈∂Λ̂jK
ĜjK (λ) − ĜjK (λ∗

jK ) < 0} ≥ 1 − ϵ .

Note that the event {∀λ∈∂Λ̂jK (ϵ)
ĜjK (λ∗

jK ) > ĜjK (λ)} implies that there exists a local maximum point in the interior of Λ̂jK (ϵ).
Furthermore, the function ĜjK is strictly concave and λ̂jK is the unique maximizer of ĜjK , then we get

Pr{λ̂jK ∈ Λ̂jK (ϵ)} > 1 − ϵ , (A.26)

which implies (A.13).
Next we prove (A.14). By the Mean Value Theorem, we have

Np̂jK (x) − Np∗

jK (x) = ρ ′
{λ̂⊤

jKuKj (x)} − ρ ′
{(λ∗

jK )
⊤uKj (x)} = ρ ′′

{λ̃⊤

jKuKj (x)}(λ̂jK − λ∗

jK )
⊤uKj (x),

where λ̃jK lies on the line joining λ̂jK and λ∗

jK . From (A.20) and (A.26), we have

sup
x∈X

|ρ ′′
{λ̃⊤

jKuKj (x)}| = Op(1). (A.27)

Hence we can obtain that

sup
x∈X

|Np̂jK (x) − Np∗

jK (x)| ≤ sup
x∈X

|ρ ′′
{λ̃⊤

jKuKj (x)}| × ∥λ̂jK − λ∗

jK∥ × sup
x∈X

∥uKj (x)∥ = Op{ζ (Kj)
√
Kj/N}.

Next, we prove (A.15). By the Mean Value Theorem, (A.1) and (A.27), we have∫
X

|Np̂jK (x) − Np∗

jK (x)|
2dFX (x) =

∫
X

|ρ ′′
{λ̃⊤

jKuKj (x)} × (λ̂jK − λ∗

jK )
⊤uKj (x)|

2
dFX (x)

≤ sup
x∈X

|ρ ′′
{λ̃⊤

jKuKj (x)}|
2
× (λ̂jK − λ∗

jK )
⊤

×

∫
X
uKj (x)uKj (x)

⊤dFX (x) × (λ̂jK − λ∗

jK )

= sup
x∈X

|ρ ′′
{λ̃⊤

jKuKj (x)}|
2
× ∥λ̂jK − λ∗

jK∥
2

= Op(1) × Op(Kj/N) = Op(Kj/N).

Finally, we prove (A.16). By the Mean Value Theorem, (A.12) and (A.27), we have

1
N

N∑
i=1

|Np̂jK (X i) − Np∗

jK (X i)|2=
1
N

N∑
i=1

|ρ ′′
{λ̃⊤

jKuKj (X i)} × (λ̂jK − λ∗

jK )
⊤uKj (X i)|

≤ sup
x∈X

⏐⏐ρ ′′
{λ̃⊤

jKuKj (x)}
⏐⏐2 × (λ̂jK − λ∗

jK )
⊤

×

{
1
N

N∑
i=1

uKj (X i)uKj (X i)⊤
}
(λ̂jK − λ∗

jK )

≤ sup
x∈X

|ρ ′′
{λ̃⊤

jKuKj (x)}|
2
× ∥λ̂jK − λ∗

jK∥
2
× λmax

{
1
N

N∑
i=1

uKj (X i)uKj (X i)⊤
}

≤ Op(1) × Op(Kj/N) × Op(1) = Op(Kj/N).

This completes the proof of Lemma B. □

Appendix B. Sketched proof of Theorem 2
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See Section 4 of the Online Supplement [17] for a complete proof of Theorem 2. In this section, we present an
asymptotic expansion of

√
N {F̂j(y) − F 0

j (y) −
∑N

i=1 ψj(Yji,X i, Tji; y)/N}, which is a key step in our proof. We begin with
introducing some notation:

ΣjK = E
[
πj(X)ρ ′′

{(λ∗

jK )
⊤uKj (X)}uKj (X)u⊤

K (X)
]
,

ΨjK (y) = −E
[
Fj(y|X i)πj(X i)ρ ′′

{(λ∗

jK )
⊤uKj (X i)}uKj (X i)

]
,

QjK (x, y) = ΨjK (y)⊤Σ−1
jK × uKj (x).

Note that QjK (x, y) is a weighted L2-projection (with respect to the weighted measure −ρ ′′
{(λ∗

jK )
⊤uKj (x)}dFX (x) of −Fj(y|x)

onto the space linearly spanned by uKj (x). We also define

Σ̃jK =
1
N

N∑
i=1

Tjiρ ′′
{(λ̃jK )⊤uKj (X i)}uKj (X i)u⊤

Kj (X i),

Ψ̃jK (y) = −

∫
X
Fj(y|x) × πj(x) × ρ ′′

{λ̃⊤

jKuKj (x)}uKj (x)dFX (x),

Q̃jK (x, y) = Ψ̃jK (y)⊤Σ̃jKuKj (x),

where λ̃jK lies on the line joining λ∗

jK and λ̂jK such that the Mean Value Theorem holds:

0 =
1
N

N∑
i=1

Tjiρ ′
{λ̂⊤

jKuKj (X i)}uKj (X i) −
1
N

N∑
i=1

uKj (X i)

=
1
N

N∑
i=1

Tjiρ ′
{(λ∗

jK )
⊤uKj (X i)}uKj (X i) −

1
N

N∑
i=1

uKj (X i) +
1
N

N∑
i=1

Tjiρ ′′
{λ̃⊤

jKuKj (X i)}uKj (X i)uKj (X i)⊤ × (λ̂jK − λjK ).

For each j ∈ {1, . . . , d}, a key decomposition holds as follows:

√
N

[
F̂j(y) − F 0

j (y) −
1
N

N∑
i=1

ψj(Yji,X i, Tji; y)

}

=
1

√
N

N∑
i=1

{
NTjip̂jK (X i)1(Yji ≤ y) − F 0

j (y) −

[
Tji

πj(X i)
1(Yji ≤ y) − Fj(y|X i)

{
Tji

πj(X i)
− 1

}
− F 0

j (y)
]]

=
1

√
N

N∑
i=1

[
{Np̂jK (X i) − Np∗

jK (X i)}Tji1(Yji ≤ y) −

∫
X
Fj(y|x)πj(x){Np̂jK (x) − Np∗

jK (x)}dFX (x)

]
(B.1)

+
1

√
N

N∑
i=1

[
{Np∗

jK (X i) − 1/πj(X i)}Tji1(Yji ≤ y) − E
[
Fj(y|X i)πj(X i){Np∗

jK (X i) − 1/πj(X i)}
]]

(B.2)

+
√
N E

[
Fj(y|X i)πj(X i){Np∗

jK (X i) − 1/πj(X i)}
]

(B.3)

+
√
N

[∫
X
Fj(y|x)πj(x){Np̂jK (x) − Np∗

jK (x)}dFX (x) −
1
N

N∑
i=1

[Tjiρ ′
{(λ∗

jK )
⊤uKj (X i)} − 1]Q̃jK (X i, y)

]
(B.4)

+
1

√
N

N∑
i=1

[Tjiρ ′
{(λ∗

jK )
⊤uKj (X i)} − 1]{Q̃jK (X i, y) − QjK (X i, y)} (B.5)

+
1

√
N

N∑
i=1

[
[Tjiρ ′

{(λ∗

jK )
⊤uKj (X i)} − 1]QjK (X i, y) + Fj(y|X i){Tji/πj(X i) − 1}

]
. (B.6)

We will show the terms (B.1)–(B.6) are of op(1) uniformly in y ∈ R. A core part of the proof is to show that
the term (B.6) is op(1), as it links all the unknown functions, i.e., πj(x) and Fj(y|x), with the calibration weights and
balancing moment conditions. This is done by a weighted projection argument. Then, by Lemma A.2 in [12], the collection
{ψj(Yji,X i, Tji; y) : y ∈ R} is a Donsker class for each j ∈ {1, . . . , d}. The Cartesian product of d Donsker classes of
functions is also a Donsker class; see p. 270 in [54]. Hence, by Donsker’s Theorem or the Functional Central Limit Theorem,
Theorem 2 holds. □
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Appendix C. Proof of Theorem 4

Using Assumption 1, the definitions Uji = F 0(Yji) and η(X i) = Pr (T1i = · · · = Tdi = 1|X i), we can write the true copula
C0 as follows:

C0(u1, . . . , ud) = E
[
1{F 0

1 (Y1i) ≤ u1, . . . , F 0
d (Ydi) ≤ ud}

]
= E

[
E
[
1{F 0

1 (Y1i) ≤ u1, . . . , F 0
d (Ydi) ≤ ud}|X i

]]
= E

[
E [1(T1i = 1, . . . , Tdi = 1)/η(X i)|X i] × E

[
1{F 0

1 (Y1i) ≤ u1, . . . , F 0
d (Ydi) ≤ ud}|X i

]]
= E

[
E
[
1(T1i = 1, . . . , Tdi = 1)1{F 0

1 (Y1i) ≤ u1, . . . , F 0
d (Ydi) ≤ ud}/η(X i)|X i

]]
= E

[
1(T1i = 1, . . . , Tdi = 1)1{F 0

1 (Y1i) ≤ u1, . . . , F 0
d (Ydi) ≤ ud}/η(X i)

]
= E [1(T1i = 1, . . . , Tdi = 1)1{U1i ≤ u1, . . . ,Udi ≤ ud}/η(X i)] .

By Theorem 3, Nq̂K (x) is a consistent estimator for η(x). Then we define the empirical copula

Ĉ(u1, . . . , ud) =

N∑
i=1

1(T1i = 1, . . . , Tdi = 1)q̂K (X i)1{F̂1(Y1i) ≤ u1, . . . , F̂d(Ydi) ≤ ud}.

Recall the definitions of θ̂ and θ0, viz.

θ̂ = argmax
θ∈Θ

{∫
[0,1]d

ℓ(u1, . . . , ud; θ )dĈ(u1, . . . , ud)
}
, θ0 = argmax

θ∈Θ

{∫
[0,1]d

ℓ(u1, . . . , ud; θ )dC0(u1, . . . , ud)
}
.

By Theorem 2,
√
N (F̂j − Fj) weakly converges to a Gaussian process in L∞([0, 1]). Then, in light of Lemma 1(a) in [5],

√
N (Ĉ − C0) weakly converges to a Gaussian process in L∞([0, 1]d). By Example 19.8 in [54], Assumption 13 implies the

bracketing number N[×]{δ,H, L1(C0)} < ∞ for the class of functions H = {ℓ(u1, . . . , ud; θ ) : θ ∈ Θ}. Then by Lemma 1(c)
in [5], we obtain

sup
θ∈Θ

⏐⏐⏐⏐∫
[0,1]d

ℓ(u1, . . . , ud; θ )dĈ(u1, . . . , ud) −

∫
[0,1]d

ℓ(u1, . . . , ud; θ )dC0(u1, . . . , ud)
⏐⏐⏐⏐ p
−→ 0,

which implies that θ̂
p

−→ θ0. This completes the proof of Theorem 4. □

Appendix D. Proof of Theorem 5

By the definition of θ̂ and the Mean Value Theorem, we have

0 =
√
N

N∑
i=1

1(T1i = 1, . . . , Tdi = 1)q̂K (X i)ℓθ {F̂1(Y1i), . . . , F̂d(Ydi); θ̂}

=
√
N

N∑
i=1

1(T1i = 1, . . . , Tdi = 1)q̂K (X i)ℓθ {F̂1(Y1i), . . . , F̂d(Ydi); θ0} (D.1)

+

N∑
i=1

1(T1i = 1, . . . , Tdi = 1)q̂K (X i)ℓθθ {F̂1(Y1i), . . . , F̂d(Ydi); θ̄} ×
√
N (θ̂ − θ0), (D.2)

where θ̄ lies on the line joining θ̂ and θ0. Concerning the term (D.2), two facts hold:

(a) by Example 19.8 in [54], Assumption 16 implies the bracketing number N[×]{δ,H, L1(C0)} < ∞ for the class of
functions H = {ℓθθ (u1, . . . , ud; θ ) : θ ∈ Θ, ∥θ − θ0∥ = o(1)}.

(b)
√
N (Ĉ − C0) converges weakly to a Gaussian process in ℓ∞([0, 1]d).

Combining the facts (a) and (b) and Lemma 1(c) in [5], we can conclude that

sup
θ∈Θ:∥θ−θ0∥=o(1)

 N∑
i=1

1(T1i = 1, . . . , Tdi = 1)q̂K (X i)ℓθθ {F̂1(Y1i), . . . , F̂d(Ydi); θ} − E{ℓθθ (U1i, . . . ,Udi; θ0)}


= sup
θ∈Θ:∥θ−θ0∥=o(1)

∫
u∈[0,1]d

ℓθθ (u; θ )d{Ĉ(u) − C0(u)}
 p

−→ 0, (D.3)

where u = (u1, . . . , ud)⊤ ∈ [0, 1]d. Combining (D.3) with the consistency result ∥θ̄ − θ0∥ ≤ ∥θ̂ − θ0∥
p

−→ 0, we find that
N∑
i=1

1(T1i = 1, . . . , Tdi = 1)q̂K (X i)ℓθθ {F̂1(Y1i), . . . , F̂d(Ydi); θ̄} = −B + op(1), (D.4)
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where B = −E{ℓθθ (U1i, . . . ,Udi; θ0)} with Uji = F 0
j (Yji).

We next consider the term (D.1). Since E{ℓθ (U1i, . . . ,Udi; θ0)} = 0, by the Mean Value Theorem we deduce that

(D.1) =
√
N

[ N∑
i=1

1(T1i = 1, . . . , Tdi = 1)q̂K (X i) × ℓθ {F 0
1 (Y1i), . . . , F 0

d (Ydi); θ0} − E{ℓθ (U1i, . . . ,Udi; θ0)}
]

(D.5)

+

N∑
i=1

d∑
j=1

1(T1i = 1, . . . , Tdi = 1)q̂K (X i) × ℓθ j{F̄1(Y1i), . . . , F̄d(Ydi); θ0} ×
√
N {F̂j(Yji) − F 0

j (Yji)}, (D.6)

where F̄j(Yji) lies between F 0
j (Yji) and F̂j(Yji). Similar to Theorem 2 (1), replacing Tji by 1(T1i = · · · = Tdi = 1), replacing p̂jK (x)

by q̂K (x), and replacing 1(Yji ≤ y) by ℓθ {F 0
1 (Y1i), . . . , F 0

d (Ydi); θ0}, we have the following asymptotic linear representation
for the term (D.5):

(D.5) =
1

√
N

N∑
i=1

ϕ(T i,X i,U i; θ0) + op(1), (D.7)

where

ϕ(T i,X i,U i; θ0) = 1(T1i = · · · = Tdi = 1)ℓθ (U i; θ0)/η(X i)

−E{ℓθ (U i; θ0)|X i} {1(T1i = · · · = Tdi = 1)/η(X i) − 1} − E{ℓθ (U i; θ0)}.

For the term (D.6), we can deduce from Theorem 2 that

√
N{F̂j(y) − F 0

j (y)} =
1

√
N

N∑
i=1

[
Tji1(Yji ≤ y)/πj(X i) − E{1(Yji ≤ y)|X i}{Tji/πj(X i) − 1} − F 0

j (y)
]
+ op(1)

=
1

√
N

N∑
i=1

{
Tji1{Uji ≤ F 0

j (y)}/πj(X i) − E[1{Uji ≤ F 0
j (y)}|X i]{Tji/πj(X i) − 1} − F 0

j (y)
}

+ op(1)

=
1

√
N

N∑
i=1

[φj{Tji,X i,Uji; F 0
j (y)} − F 0

j (y)] + op(1), (D.8)

where, for all v ∈ [0, 1],

φj(Tji,X i,Uji; v) =
Tji

πj(X i)
1(Uji ≤ v) −

Tji
πj(X i)

E{1(Uji ≤ v)|X i} + E{1(Uji ≤ v)|X i}.

By Theorems 2 and 3, and (D.8), we can deduce that

(D.6) =

N∑
i=1

d∑
j=1

1(T1i = 1, . . . , Tdi = 1)q̂K (X i) × ℓθ j{F̄1(Y1i), . . . , F̄d(Ydi); θ0} ×
√
N {F̂j(Yji) − F 0

j (Yji)}

=

[
1
N

N∑
i=1

d∑
j=1

1(T1i = 1, . . . , Tdi = 1)
η(X i)

× ℓθ j{F 0
1 (Y1i), . . . , F 0

d (Ydi); θ0}
]

×
1

√
N

N∑
k=1

{φj(Tjk,X k,Ujk;Uji) − Uji} + op(1)

=
1

√
N

N∑
k=1

d∑
j=1

E
[
ℓθ j(U1s, . . . ,Uds; θ0){φj(Tjk,X k,Ujk;Ujs) − Ujs}|Ujk,X k, Tjk

]
+ op(1) (s ̸= k)

=
1

√
N

N∑
k=1

d∑
j=1

Wj(Tjk,X k,Ujk; θ0) + op(1) , (D.9)

where the third equality follows from the Law of Large Numbers.
Combining (D.5), (D.6), (D.7), and (D.9) yields

(D.1) =
1

√
N

N∑
i=1

⎧⎨⎩ϕ(T i,X i,U i; θ0) +

d∑
j=1

Wj(Tji,X i,Uji; θ0)

⎫⎬⎭ + op(1),
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then in light of (D.2) and (D.4), we have

√
N (θ̂ − θ0) = B−1

×
1

√
N

N∑
i=1

⎧⎨⎩ϕ(T i,X i,U i; θ0) +

d∑
j=1

Wj(Tji,X i,Uji; θ0)

⎫⎬⎭ + op(1).

Finally, by the Central Limit Theorem,
√
N (θ̂ − θ0) ⇝ B−1ΣB−1 as N → ∞, where

Σ = var

⎧⎨⎩ϕ(T i,X i,U i; θ0) +

d∑
j=1

Wj(Tji,X i,Uji; θ0)

⎫⎬⎭ .

This completes the proof of Theorem 5. □

Appendix E. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2019.02.003.
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