期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:136
Estimation in skew-normal linear mixed measurement error models
Article
Kheradmandi, Ameneh1  Rasekh, Abdolrahman1 
[1] Shahid Chamran Univ, Dept Stat, Ahvaz, Iran
关键词: Maximum likelihood;    EM algorithm;    Structural model;    Skewness;   
DOI  :  10.1016/j.jmva.2014.12.007
来源: Elsevier
PDF
【 摘 要 】

In this paper we define a class of skew-normal linear mixed measurement error models. This class provides a useful generalization of normal linear mixed models with measurement error in fixed effects variables. It is assumed that the random effects, model errors and measurement errors follow a skew-normal distribution, extending usual symmetric normal model in order to avoid data transformation. We find the likelihood function of the observed data, which can be maximized by using standard optimization techniques. Next, an EM-type algorithm is proposed for estimating the parameters that seems to provide some advantages over a direct maximization of the likelihood. Finally, we propose results of a simulation study and an example of real data for illustration. (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2014_12_007.pdf 681KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次