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a b s t r a c t

In this paper we define a class of skew-normal linear mixed measurement error models.
This class provides a useful generalization of normal linear mixed models with measure-
ment error in fixed effects variables. It is assumed that the random effects, model errors
and measurement errors follow a skew-normal distribution, extending usual symmetric
normal model in order to avoid data transformation. We find the likelihood function of the
observed data, which can be maximized by using standard optimization techniques. Next,
an EM-type algorithm is proposed for estimating the parameters that seems to provide
some advantages over a direct maximization of the likelihood. Finally, we propose results
of a simulation study and an example of real data for illustration.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Linear mixed effects models are the most common statistical tools for analyzing repeated measurement data and in par-
ticular, longitudinal data in biomedical, agricultural, environmental and also in economics and social sciences. In themodels,
independent variables are often measured with non-negligible errors (Davidian and Giltinan, [16]). Hence considerable in-
terest has been focused on the study of the estimation of parameters in measurement error models. Main references on
the subject include Armstrong [4], Fuller [19], Stefanski and Carroll [25], Cheng and Van Ness [13], Zhong et al. [29], Carroll
et al. [12] and Zare et al. [27]. Let yi be an observed continues response.We assume the following linearmixedmeasurement
error model as:

yi = α + βxi + bizi + ei,
Xi = xi + ui, i = 1, . . . , n (1)

where α and β are fixed parameters and bi’s are random effects with bi
i.i.d.
∼ N(0, σ 2

b ). In this model Xi is the observed value

of the xi with measurement error ui. Furthermore, it is assumed that (ei, ui)
′
i.i.d.
∼ N2((0, 0)′, diag{σ 2

e , σ 2
u }), with i.i.d. means

independent and identically distributed. In the structural model, it is also assumed that xi
i.i.d.
∼ N(µx, σ

2
x ), and {x, e, u, b}

are mutually independent (see, Fuller [19]). There are several proposals of estimation for mixed effects models, for example
see, Davidian and Giltinan [15,16], Karcher andWang [23], Demidenko and Stukel [17] and Vonesh et al. [26]. Zare et al. [27]
studied the estimation problem for the functional mixed measurement error model. Under normality assumption, they
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applied the corrected score method of Nakamura [24] to obtain the estimators of the parameters. Cui et al. [14] derived the
moments of estimators for the parameters in mixed effects model with error in variables.

On the other hand, the normality (symmetry) assumption is a routine but possibly restrictive assumption for different
statistical models including the linear mixed measurement error models. In recent years, considerable interest has focused
on the models relaxing normality assumption and incorporating asymmetry. Azzalini [6] introduces skew-normal distri-
bution, extending usual normal model in order to avoid data transformation. The univariate skew-normal density function
with location parameter µ, scale parameter σ 2 and skewness parameter λ, is defined by

f (x; µ, σ 2, λ) = 2φ

x − µ

σ


Φ


λ
x − µ

σ


, x, µ, λ ∈ R, σ > 0

where φ(.) and Φ(.) denote the probability density function and cumulative distribution function, respectively, of the nor-
mal distribution. A random variable Z =

x−µ

σ
follows a standard skew-normal distribution with µ = 0 and σ 2

= 1, which
is denoted by SN(λ). The skew-normal distribution has the following properties:

(i) E(X) = µ +


2
π

λ√
1+λ2

.

(ii) Var(X) = (1 −
2λ

π(1+λ2)
)σ 2.

(iii) ν =
1
2 (4 − π)( E2(X)

Var(X)
)
3
2 and κ = 2(π − 3)( E2(X)

Var(X)
)2, where ν and κ are asymmetry and kurtosis indexes, respectively.

(iv) If λ = 0 then X ∼ N(µ, σ 2).
(v) As pointed out by Henze [21], if Z ∼ SN(λ) then

Z d
= δ|Z0| + (1 − δ2)

1
2 Z1. (2)

where Z0 ∼ N(0, 1) and Z1 ∼ N(0, 1) are independent variables, δ =
λ√

(1+λ2)
and d

= means ‘‘distributed as’’.

Other properties of this distribution and its variations have been discussed by several authors including Azzalini [7],
Henze [21], Azzalini and Capitanio [9], Azzalini and Dalla Valla [10], Arnold and Beaver [5] and Azzalini [8]. Arellano-Valle
et al. [3] define a class of skew-normal measurement error models for a linear regression model. Skew-normal linear mixed
models are introduced in Arellano-Valle et al. [1] and Bolfarine et al. [11] consider influence diagnostics for this model. In
this paper, we define skew-normal linear mixedmeasurement error model that follows by replacing the normality assump-
tions by the assumptions that the random terms ei and ui, the random effect bi and the independent variable xi have the
skew-normal distribution. We obtain the likelihood function of the observed data Zi = (yi, Xi), i = 1, . . . , n. In addition,
we consider some special cases where λe = λu = λb = 0 or λe = λu = λx = 0 in detail. We present an EM algorithm,
which can overcome some difficulties detected by using direct maximization of the likelihood function, especially in terms
of robustness with respect to starting values. The plan of the paper is as follows: In Section 2, we derive themarginal density
of the observed data Zi by integrating out the unobserved variables xi and bi. In Section 3, we present an EM-type algorithm
and a simulation study is given in Section 4. To illustrate the usefulness of the proposed methods, an application to a real
data set is reported in Section 5. Finally, Section 6 is dedicated to the concluding remarks.

2. The skew-normal linear mixed measurement error model

To consider a structural skew-normalmixedmeasurement errormodel, under themodel defined by (1), we assume that:

ei
i.i.d.
∼ SN(0, σ 2

e , λe), ui
i.i.d.
∼ SN(0, σ 2

u , λu),

xi
i.i.d.
∼ SN(0, σ 2

x , λx), bi
i.i.d.
∼ SN(0, σ 2

b , λb), i = 1, . . . , n (3)

with {x, e, u, b} are independent. Leading, under above model, we have

yi|xi, bi ∼ SN(α + βxi + bizi, σ 2
e , λe),

Xi|xi, bi ∼ SN(xi, σ 2
u , λu).

In the following, we drop the subscript i in a sample unit to simplify notation. Hence, the conditional distribution of (y, X)
given x and b can be computed by

f (y, X |x, b) =
22

σeσu
φ


y − α − βx − bz

σe


φ


X − x
σu


Φ


λe

y − α − βx − bz
σe


Φ


λu

X − x
σu


.

Furthermore,

f (x, b) =
22

σxσb
φ


x − µx

σx


φ


b
σb


Φ


λx

x − µx

σx


Φ


λb

b
σb


.
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Then, the joint marginal density of (y, X) obtained by

f (y, X) =


f (y, X |x, b)f (x, b)dxdb

=


24

σeσuσxσb
φ


y − α − βx − bz

σe


φ


X − x
σu


φ


x − µx

σx


φ


b
σb


× Φ


λe

y − α − βx − bz
σe


Φ


λu

X − x
σu


Φ


λx

x − µx

σx


Φ


λb

b
σb


dxdb. (4)

Making the transformations ν = x − µx, ū = X − µx and ē = y − α − βµx, we have (4) as:

f (y, X) =


24

σeσuσxσb
φ


ē − βν − bz

σe


φ


ū − ν

σu


φ


ν

σx


φ


b
σb


× Φ


λe

ē − βν − bz
σe


Φ


λu

ū − ν

σu


Φ


λx

ν

σx


Φ


λb

b
σb


dνdb. (5)

Letw = (ē, ū, 0, 0)′,0 = (ν, b)′, c ′
=


β 1 −1 0
z 0 0 −1


,9 = diag(σe, σu, σx, σb),91 = diag(σe, σu),92 = diag(σe, σu, σx)

and 3 = diag(λe, λu, λx, λb). Then it follows that

φ


ē − βν − bz

σe


φ


ū − ν

σu


φ


ν

σx


φ


b
σb


= φ4(w; c0, 9), (6)

and

Φ


λe

ē − βν − bz
σe


Φ


λu

ū − ν

σu


Φ


λx

ν

σx


Φ


λb

b
σb


= Φ4(3w − 3c0; 0, 9), (7)

where φk and Φk are the probability density and the cumulative distribution function, respectively, of the k-dimensional
normal distribution. Next, we need the following two lemmas:

Lemma 1.

φ4(w; c0, 9) = φ2(Z; µ, 6)φ2(0; (c′9−1c)−1c ′9−1w, (c ′9−1c)−1),

where Z = (y, X)′, µ =


α + βµx

µx


and 6 =


β2σ 2

x + z2σ 2
b + σ 2

e βσ 2
x

βσ 2
x σ 2

x + σ 2
u


.

Proof. See Appendix. �

Lemma 2. Let V ∼ Nk(ξ, 1). Then for any fixed m-dimensional vector a and m × k matrix A,

E [Φm(A + aV ; κ,H)] = Φm(a; κ − Aξ,H + A1A′).

Proof. See Arellano-Valle et al. [3]. �

With the aid of above lemmas, we prove the following theorem, which is the main result of the paper.

Theorem 1. Under the skew-normal linear mixed measurement error model given in (1) and (3), the marginal density function
of Z = (y, X)′ is given by

f (Z; θ, λ) = 24φ2(Z; µ, 6)Φ4(3Mw; 0, 9 + 3c(c ′9−1c)−1c ′3),

where θ′
= (α, β, µx, σ

2
e , σ 2

u , σ 2
x , σ 2

b ), λ′
= (λe, λu, λx, λb), B = (I2, c1), c1 =


β z
1 0


and Mw = 9B′6−1(Z − µ).

Proof. See Appendix. �

Remarks:

i. Note that the density given in Theorem 1 is in the class of fundamental skew-distributions defined by Arellano-Valle and
Genton [2]. As pointed out by Arellano-Valle et al. [3], in this family of densities, the thirdmoment is nonnull whenλ ≠ 0.
Hence, the skew-normal linear mixed measurement error model defined in this paper is identifiable as long as λ ≠ 0.
However, parameter estimates are unstable if λ is close to 0, that is, when Z is close to being normally distributed, so that
the additional assumptions on the variance have to be added to the model. This condition was also noted in simulation
study and application conducted by authors.

ii. We call attention to the fact that if σ 2
b = 0 then results obtained in Lemmas 1, 2 and Theorem 1 reduce to the results

obtained in Arellano-Valle et al. [3]. Thus we have extended the skew-normal measurement error model in a nice way
to the skew-normal linear mixed measurement error model.



4 A. Kheradmandi, A. Rasekh / Journal of Multivariate Analysis 136 (2015) 1–11

Hence, the likelihood function of (θ, λ) given the observed sample Z1 = (y1, X1)
′, . . . , Zn = (yn, Xn)

′ is given by
L(θ, λ|Z1, . . . , Zn) =

n
i=1 f (Zi; θ, λ) and its log-likelihood function can be written as:

ℓ(θ, λ) ∝ −
n
2
log |6| −

1
2

n
i=1

(Zi − µ)′6−1(Zi − µ) +

n
i=1

log

Φ4(3∗6

−
1
2 (Zi − µ); 0, �)


,

where 3∗ = 39B′6−
1
2 and � = 9 + 3c(c ′9−1c)−1c ′3. The maximum likelihood estimators are given by solution of the

following equation:

∂ℓ(θ, λ)

∂θ
= −

n
2|6|

∂|6|

∂θ
−

1
2

∂

∂θ

n
i=1

(Zi − µ)′6−1(Zi − µ) +

n
i=1

 ∂
∂θ

Φ4


3∗6

−
1
2 (Zi − µ); 0, �


Φ4


3∗6

−
1
2 (Zi − µ); 0, �


 = 0,

∂ℓ(θ, λ)

∂λ
=

n
i=1

 ∂
∂λ

Φ4


3∗6

−
1
2 (Zi − µ); 0, �


Φ4


3∗6

−
1
2 (Zi − µ); 0, �


 = 0.

Noting that the likelihood function has to be maximized numerically. It can be implemented by statistical softwares such as
R, Matlab and OX. We are interested in some special cases such as λe = λu = λx = 0 and λe = λu = λb = 0 which are two
special cases of the above general situations.

Corollary 1. Under the conditions of Theorem 1, it follows that:

i. If λe = λu = λb = 0 the density function of Z = (y, X)′ is given by

f (Z; θ, λx) = 2|9|
−

1
2 φ2(Z; µ, 6)Φ


(σ 2

x + f λ2
x)

−
1
2 λxσ

2
x c

∗
′

1 6−1(Z − µ)


(8)

where c∗

1 =


β
1


and

f =
z2σ−2

e + σ−2
b

(z2σ−2
e + σ−2

b )(σ−2
u + σ−2

b ) + β2σ−2
e σ−2

b

.

ii. If λe = λu = λx = 0 the density function of Z = (y, X)′ is given by

f (Z; θ, λx) = 2|9|
−

1
2 φ2(Z; µ, 6)Φ(νbλbσbc∗

′

2 6−1(Z − µ)) (9)

where c∗

2 =


z
0


and

νb =


1 +

λ2
b(β

2σ 2
u σ 2

x + σ 2
e (σ 2

u + σ 2
x ))

β2σ 2
u σ 2

x + (z2σ 2
b + σ 2

e )(σ 2
u + σ 2

x )

−
1
2

.

Proof. i. Let 3 = diag(0, 0, λx, 0) = λxe3e′

3 where e3 = (0, 0, 1, 0)′ and 9 + 3c(c ′9−1c)−1c ′3 = diag(σ 2
e , σ 2

u , σ 2
x +

f λ2
x , σ

2
b ). Noting that Be3 = c∗

1 and 9e3 = σ 2
x e3, we have that:

39B′6−1(Z − µ) = λxσ
2
x e3c

∗

16−1(Z − µ),

then

(9 + 3c(c ′9−1c)−1c ′3)−
1
2 39B′6−1(Z − µ) = (σ 2

x + f λ2
x)

−
1
2 λxσ

2
x c

∗

16−1(Z − µ)e3,

so that

Φ4(39B′6−1(Z − µ); 0, 9 + 3c(c ′9−1c)−1c ′3) = Φ4


(9 + 3c(c ′9−1c)−1c ′3)−

1
2 39B′6−1(Z − µ); 0, I4


= Φ4


(σ 2

x + f λ2
x)

−
1
2 λxσ

2
x c

∗

16−1(Z − µ)e3; 0, I4


,

which concludes the proof, since Φ4(ae3; 0, I4) =
Φ1(a)

8 .
ii. Let 3 = diag(0, 0, 0, λb) = λbe4e′

4, where e4 = (0, 0, 0, 1)′, and

9 + 3c(c ′9−1c)−1c ′3 = diag(σ 2
e , σ 2

u , σ 2
x , σ 2

b ν−2
b ),

with noting that Be4 = c∗

2 and 9e4 = σ 2
b e4, we have that

39B′6−1(Z − µ) = λbσ
2
b e4c

∗

26−1(Z − µ),
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then,

(9 + 3c(c ′9−1c)−1c ′3)−
1
2 39B′6−1(Z − µ) = νbλbσbc∗

26−1(Z − µ)e4,

so that,

Φ4(39B′6−1(Z − µ); 0, 9 + 3c(c ′9−1c)−1c ′3) = Φ4


(9 + 3c(c ′9−1c)−1c ′3)−

1
2 39B′6−1(Z − µ); 0, I4


= Φ4(νbλbσbc∗

26−1(Z − µ)e4; 0, I4),

this concludes the proof, since Φ4(ae4; 0, I4) =
Φ1(a)

8 . �

3. An EM-type algorithm

A direct maximization of the likelihood function (8) and (9) may sometimes poses problems since it involves terms like
logΦ(w). Further, the approach seems not too robust with starting value. As pointed out by Dempster et al. [18], the EM
algorithm is a popular iterative algorithm for ML estimation in models with incomplete data. In this section we want to find
an EM-type algorithm for maximization of the likelihood function (8) and (9).

3.1. EM-type algorithm when λe = λu = λx = 0

We can write the model given in (1) as:

Zi = a1 + c∗

1 xi + bic∗

2 + ri, (10)

with the assumptions that

ri
i.i.d.
∼ N2(0, 91), xi

i.i.d.
∼ N(µx, σ

2
x ), bi

i.i.d.
∼ SN(0, σ 2

b , λb), (11)

where Zi = (yi, Xi)
′, a1 = (α, 0)′, ri = (ei, ui)

′ and 91 = diag(σ 2
e , σ 2

u ). The last assumption in (11) implies that αbi =

bi
σb

i.i.d.
∼ SN(λb), i = 1, . . . , n. The property given in (2) implies that αbi = δb|ν0i | + (1 − δ2

b )
1
2 ν1i , and so

bi = σbδb|ν0i | + σb(1 − δ2
b )

1
2 ν1i , i = 1, . . . , n (12)

where ν0i and ν1i are i.i.d. random variables with standard normal distributions and δb =
λb

(1+λ2b)
1
2
. The independence be-

tween bi and (xi, r ′

i ), i = 1, . . . , n imply that Vi = (ν0i , ν1i) and (xi, r ′

i ) are all independent. Hence, replacing (12) in (10)
we have that

Zi = a1 + σbδbc∗

2 tbi + rxbi , (13)

where tbi = |ν0i| and rxbi = c∗

1 xi + σb(1 − δ2
b )

1
2 c∗

2ν1i + ri. Thus the assumptions given in (11), imply that

rxbi
i.i.d.
∼ N2(c∗

1µx, 91 + σ 2
b (1 − δ2

b )c
∗

2 c
∗
′

2 + σ 2
x c

∗

1 c
∗
′

1 ), tbi
i.i.d.
∼ HN1(0, 1), (14)

where HN1(0, 1) denotes the half-normal distribution. The results obtained in (13) and (14) imply that the model defined
in (10) and (11) can be specified as

Zi|tbi
i.i.d.
∼ N2(µ + c∗

xbtbi , 9xb), (15)

where µ = a1 + c∗

1µx, c∗

xb = σbδbc∗

2 and 9xb = 91 + σ 2
b (1 − δ2

b )c
∗

2 c
∗
′

2 + σ 2
x c

∗

1 c
∗
′

1 . In order to implement the two steps of
the EM algorithm, we need some lemmas, which are presented next.

Lemma 3. The complete log-likelihood function of (Z ′

i , tbi), i = 1, . . . , n is given by

ℓc(θ, λb) ∝ −
n
2
log9xb −

1
2

n
i=1

(Zi − µ)′6−1(Zi − µ) −
1

2τ 2
xb

n
i=1

(tbi − ηxbi)
2, (16)

where

ηxbi =
c∗

′

xb9
−1
xb (Zi − µ)

1 + c∗′

xb9
−1
xb c∗

xb

and τ 2
xb =

1

1 + c∗′

xb9
−1
xb c∗

xb

.

Proof. Under the distributions of Zi|tbi and tbi given in (14) and (15), we have

f (Zi, tbi; θ, λb) = 2φ2(Zi; µ + c∗

xbtbi , 9xb)φ1(tbi)I

tbi>0

.
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Also 6 and 9xb can be written as 6 = 91 + σ 2
b c

∗

2 c
∗
′

2 + σ 2
x c

∗

1 c
∗
′

1 and 9xb = 6 − c∗

xbc
∗
′

xb . Then, after some manipulations, we
can show that

φ2(Zi|µ + c∗

xbtbi , 9xb)φ1(tbi) = φ2(Zi; µ, 6)φ1(tbi; ηxbi , τ
2
xb), i = 1, . . . , n

this concludes the proof.

Lemma 4. Let X ∼ N(η, τ 2). Then for any real constant a, it follows that

E(X |X > a) = η +
φ1

 a−η

τ


1 − Φ1

 a−η

τ

τ ,

E(X2
|X > a) = η2

+ τ 2
+

φ1
 a−η

τ


1 − Φ1

 a−η

τ

 (η + a)τ .

Proof. See Johnson et al. [22]. �

Lemma 5. Let tbi and Zi|tbi be distributed as given in (14) and (15), respectively. It follows that E(tkb |Z) = E(Xk
|X > 0), where

X ∼ N1(ηxb, τ
2
xb) with ηxb and τ 2

xb given by (16). In particular

E(tb|Z) = ηxb +

φ1


ηxb
τxb


Φ1


ηxb
τxb

τxb, (17)

E(t2b |Z) = η2
xb + τ 2

xb +

φ1


ηxb
τxb


Φ1


ηxb
τxb

ηxbτxb. (18)

Proof. See Appendix. �

Each iteration of the EM algorithm consists of two steps, the expectation step (E-step) and the maximization step (M-step).
The following steps of the EM algorithm can be formulated to obtain the ML estimate of (θ, λb) for the likelihood of (16):

E-step:

1. Given starting values (θ(0), λ
(0)
b )

2. Compute t̂kbi = E(tkbi |θ
(0), λ

(0)
b , Zi), k = 1, 2, i = 1, . . . , n, by using (17) and (18).

3. Replace the missing values tkbi by t̂kbi , k = 1, 2, i = 1, . . . , n in the complete log-likelihood (16).

M-step: This step has to proceed numerically. This maximization step does not pose the same difficulty as is the case with
a direct maximization of the observed likelihood of (8).

3.2. EM-type algorithm when λe = λu = λb = 0

Likewise, we consider the case where λx ≠ 0, that is, the structural mixed measurement error model in (10), with the
assumptions that

ri
i.i.d.
∼ N2(0, 91), xi

i.i.d.
∼ SN(µx, σ

2
x , λx), and bi

i.i.d.
∼ N(0, σ 2

b ), (19)

with {ri, xi, bi} are all independent. Because of the above assumptions, it follows from property given in (2) that:

Zi = µ + σxδxc∗

1 txi + rxbi , (20)

where

txi = |ν0i|, µ = a1 + c∗

1µx, δx =
λx

(1 + λ2
x)

1
2
,

rxbi = c∗

1σx(1 − δ2
x )

1
2 ν1i + bic∗

2 + ri, (21)

which are such that

rxbi
i.i.d.
∼ N2(0, 91 + σ 2

b c
∗

2 c
∗
′

2 + σ 2
x (1 − δ2

x )c
∗

1 c
∗
′

1 ), and txi
i.i.d.
∼ HN1(0, 1) (22)

and they are independent, i = 1, . . . , n. Therefore, (20) and (22) imply that the model defined by (10) and (19) can be
written as

Zi|txi
i.i.d.
∼ N2(µ + c∗

xbtxi , 9xb), (23)
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Table 1
Estimated mean and standard deviation (SD) of the parameters from simulation study, with true SN(5,1,3) distribution for the x. True values of parameters
are in parentheses.

µx(5) α(2) β(3) σ 2
e (1) σ 2

u (1) σ 2
x (1) σ 2

b (1) λx(3) N.C.

n = 30 Mean 4.991 1.922 1.845 0.748 0.860 1.125 0.748 2.784 11.8%
SD 0.274 3.558 0.594 0.271 0.239 0.553 0.271 2.249

n = 50 Mean 5.009 1.380 1.936 0.868 0.921 1.071 0.867 3.049 10.9%
SD 0.216 3.286 0.558 0.282 0.202 0.438 0.281 2.351

n = 100 Mean 5.036 1.336 1.951 0.942 0.984 1.060 0.942 3.281 3.6%
SD 3.042 2.193 0.440 0.361 0.294 0.421 0.361 2.265

Normal Mean 5.756 1.081 1.987 0.902 0.989 0.427 0.902 0 0%
SD 0.121 0.078 0.083 0.362 0.173 0.122 0.362 0

where c∗

xb = σxδxc∗

1 and 9xb = 91 + σ 2
b c

∗

2 c
∗
′

2 + σ 2
x (1 − δ2

x )c
∗

1 c
∗
′

1 . Likewise, Lemma 3, because of the above results, the
complete log likelihood function associated with (Zi, txi) in the model given in (10) and (19), can be written as

ℓc(θ, λx) ∝ −
n
2
log9xb −

1
2

n
i=1

(Zi − µ)′6−1(Zi − µ) −
1

2τ 2
xb

n
i=1

(txi − ηxbi)
2,

where ηxbi =
c∗

′

xb9
−1
xb (Zi−µ)

1+c∗′

xb9
−1
xb c∗

xb
, τ 2

xb =
1

1+c∗′

xb9
−1
xb c∗

xb
and 6 = 9xb + c∗

xbc
∗
′

xb . We obtain from Lemma 5 that

t̂xi = E(txi |Z) = ηxbi +

φ1


ηxbi
τxb


Φ1


ηxbi
τxb

τxb, (24)

and

t̂2xi = E(t2xi |Z) = η2
xb + τ 2

xb +

φ1


ηxb
τxb


Φ1


ηxb
τxb

ηxbτxb. (25)

Two steps of the EM algorithm in this case proceed as before, with (θ(0), λ
(0)
x ), t̂xi and t̂2xi given in (24) and (25).

4. A simulation study

To assess the performance of the proposed model andmethods in studying the linear mixedmeasurement error models,
in which the distribution of {x, e, u, b} follows the skew-normal distribution, we conducted a simulation study. For sample
sizes n = 30, 50 and 100, we generated 1000 data sets according to the structural mixed measurement error model in (1)
and (3), with α = 1, β = 2, µx = 5, λx = 3, λe = λu = λb = 0 and σe = σu = σx = σb = 1. The skew-normal
representation of the xi with skewness parameter 3 detected a departure from normality and suggested strong evidence of
skewness. For each of the 1000 generated data sets of size n = 100, model 1 was fitted twice under the assumptions of pre-
vious section, with the density of xi represented by skew-normal distribution and also by the normal distribution. For each
generated sample, maximum likelihood estimators of all parameters were computed by using the EM algorithm described
in Section 3. The mean value and sample standard deviation corresponding to each parameter for the 1000 generated data
sets and each sample size are presented in Table 1. N.C. indicates percentages of samples with λ̂x = ∞. Following other
authors (e.g. Zhang and Davidian [28]) we propose to evaluate a series of fits by inspection of information criteria such as
Akaike’s information criterion (AIC), Schawarz’s Bayesian information criterion (BIC), and the Hannan–Quinn criterion (HQ).
The AIC, BIC and HQ criteria given in Table 2 indicate that the skew-normal linearmixedmeasurement error model presents
the better fit than the normal linear mixed measurement error model, supporting the contention of a departure from nor-
mality. In addition, the advantage of estimating the xi density may be appreciated from Fig. 1. Fig. 1(a) shows the average
of density estimates over the 1000 data sets of size n = 100 along with the true density, the normal fit and the fit for the
skew-normal. Fig. 1(a) demonstrates that the additional flexibility afforded by the skew-normal representation is sufficient
to capture quite accurately the true underlying features of the xi.

5. An application

To illustrate the usefulness of the above procedures, we consider the likelihood analysis of the part of a set of real data,
which is known as the Boston Housing data set. This data set was the basis for a paper given by Harrison and Rubinfeld [20],
which discussed approaches for using housing market data to estimate the willingness to pay for clean air. Zhong et al. [29]
considered this data set and used the data of n = 132 census tracts within the 15 districts of the Boston city. Census tracts
within districts are taken as repeatedmeasurements. The pollution variable NOXSQ is assumed to havemeasurement errors
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Table 2
Results of fitting normal and skew-normal linear mixed measurement error
model to the simulated data sets.

Information criteria Normal scenario Skew-normal scenario

− log -likelihood 226231.3 193211.6
AIC 2.262383 1.932196
BIC 2.262716 1.932577
HQ 2.262484 1.932311

Fig. 1. (a) Simulation results based on 1000data sets. True density (solid line) and average estimated densities: using normal (dotted line) and skew-normal
(dashed–dotted). (b) Histogram for NOXSQ levels with estimated normal density (dotted) and estimated skew-normal density (solid).

Fig. 2. (a) Histogram of LMEDV levels with estimated normal density (dotted) and estimated skew-normal density (solid). (b) Estimatedmarginal densities
of noxsq concluded using model 3 (solid) with model1 (dotted).

according to the equation

NOXSQ i = noxsqi + ui, i = 1, . . . , n.

Fig. 1(b) shows the histogram of the observed NOXSQ. Clearly, this figure indicates it is asymmetric, so that we consider
noxsq ∼ SN(µx, σ

2
x , λx). A simple plot of the histogram of the response variable (LMEDV) given in Fig. 2(a) indicates par-

tially its asymmetric nature and it would be adequate to fit a skew-normal model to the data set. The asymmetric behavior
of the LMEDV explains by the asymmetric behavior of the NOXSQ data and the random effect may not be normally dis-
tributed. Based on this information, three statistical models, differing in the NOXSQ data and random effect distributions
are entertained. These models are:

MODEL1: Amodel with skew-normal distribution for NOXSQ data and symmetric normal distribution for the random effect
and the errors.

MODEL2: Amodel with skew-normal distribution for the random effect and symmetric normal distributions for the NOXSQ
data and the errors.

MODEL3: A purely Gaussian model.

Table 3 presents the results obtained by AIC, BIC and HQ criteria of three models described above. When considering
MODEL 2, asymmetric not detected and the criteria are close to the ones obtained under normality (MODEL 3). The AIC, BIC
and HQ criteria indicate that MODEL 1 presents the best fit, supporting the contention of a departure from normality. We
present the parameter estimates obtained using the EM-type algorithm of three models described above in Table 3. SE are
the estimated asymptotic standard errors based on the Hessian matrix computed numerically.
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Table 3
Results of fitting models 1, 2 and 3 to the Boston city data.

Information criteria Normal scenario Skew-normal scenario
Parameter Model 1 Model 2 Model 3

α 10.2965 10.1545 10.2851
SE 0.0373 0.04147 0.0393
β −0.0153 −0.0150 −0.0150
SE 0.0003 4.64e−05 4.59e−05
µx 54.3107 45.5833 45.5833
SE 0.2044 0.6973 0.6970
σ 2
b 0.0460 0.0659 0.04634

SE 0.0039 0.0363 0.0227
λx −2.5242 0 0
SE 0.1532 0 0
λb 0 0.9105 0
SE 0 0.2940 0

− log-likelihood 316.658 351.4028 360.407
AIC 2.4318 2.7000 2.7606
BIC 2.4864 2.7546 2.8043
HQ 2.4540 2.7222 2.7784

Fig. 2(b) shows the estimatedmarginal densities of noxsq. It concluded using themodels 1 and 3. This figure demonstrates
the additional flexibility providing by the skew-normal assumption for noxsq.

6. Final conclusion

In this paper,wedefined the simple linear structuralmixedmeasurement errormodelwith thedistribution of the random
quantities belonging to the family of the skew-normal distribution. An analytical expression (closed form) for the likelihood
function of this model is derived by integrating out the unobserved x and the random effect b. The maximum likelihood
can be implemented using standard optimization techniques and existing statistical softwares. We also developed an EM-
type algorithm for evaluation of the MLE by exploring statistical properties of the considered model. A simulation study
conducted to indicate that the methodology seems to work well when the normality assumption of the model does not
hold. We point out that this paper is the first attempt in working on such general distributional structure for structural
mixed measurement error models and that the approach considered in this paper can be extend to the situation where
yi = α + ν′

iβν + xiβ + bizi + ei, with the additional fixed effect covariates νi, i = 1, . . . , n.
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Appendix

Proof of Lemma 1. We have

φ4(w; c0, 9) = |9|
−

1
2 (2π−2)e−

1
2 Q (w,0),

with

Q (w, 0) = (w − c0)′9−1(w − c0) = Q1(w|0) + Q2(w)

in which Q1(w|0) = (c ′9−1c)(0 −
c ′9−1w
c ′9−1c )2 and

Q2(w) = (w ′9−1w) −
w ′9−1cc ′9−1w

c ′9−1c

= (Z − µ)′9−1
1 (Z − µ) −

(Z − µ)′9−1
1 cc ′9−1

1 (Z − µ)

c ′9−1c

= (Z − µ)′


9−1

1 −
9−1

1 c1c1′9−1
1

c ′9−1c


(Z − µ)

= (Z − µ)′6−1(Z − µ).

Thus, the proof follows by noting that 6−1
=


9−1

1 −
9

−1
1 c1c1 ′9

−1
1

c ′9−1c


and |9| =

|6|

|c ′9−1c| . �
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Proof of Theorem 1. Using (6) and (7), we can write the integral given in (5) as:

f (y, X) = 24
|9|

−
1
2


φ4(w; c0, 9)Φ4(3w − 3c0; 0, 9)dνdb

= 24
|9|

−
1
2


φ2(Z; µ, 6)φ2(0; (c ′9−1c)−1c ′9−1w, (c ′9−1c)−1)Φ4(3w − 3c0; 0, 9)d0

= 24
|9|

−
1
2 φ2(Z; µ, 6)E(Φ4(3w − 3c0; 0, 9)),

in which 0 ∼ N2((c ′9−1c)−1c ′9−1w, (c ′9−1c)−1) and from Lemma 2, with k = 2,m = 4,A = −3c, ξ = (c ′9−1c)−1

c ′9−1w, κ = 0, a = 3w, 1 = (c ′9−1c)−1,V = 0, and H = 9, we have

E(Φ4(3w − 3c0; 0, 9)) = Φ4(3w; 3c(c ′9−1c)−1c ′9−1w, 9 + 3c(c ′9−1c)−1c ′3)

= Φ4(3Mw; 0, 9 + 3c(c ′9−1c)−1c ′3),

where M = I4 − P , with P = c(c ′9−1c)−1c ′. Note that Pc = c , Mc = 0 and 6 = B9B′. We can show that Mw =

9B′6−1(Z − µ). �

Proof of Lemma 5. We can write E(tkb |Z) and ηxb
τxb

as

E(tkb |Z) =


tkb f (Z, tb)dtb

f (Z)
, (A.1)

ηxb

τxb
= νbλbσbc∗

′

2 6−1(Z − µ) (A.2)

where from (A.2), the marginal density of Z and the density function of (Z ′, tb), given in (9) and (16), respectively, can be
written as

f (Z; θ, λb) = 2φ2(Z; µ, 6)Φ1


ηxb

τxb


,

f (Z, tb) = 2φ2(Z; µ, 6)φ1(tb; ηxb, τ
2
xb)I[tb>0].

Replacing the above functions in (A.1), it follows that

E(tkb |Z) =


∞

0 tkbφ1(tb; ηxb, τ
2
xb)dtb

Φ1


ηxb
τxb

 = E(Xk
|X > 0),

where X ∼ N1(ηxb, τ
2
xb) and Φ1(

ηxb
τxb

) = P(X > 0). By using of Lemma 4, the proof of Lemma 5 is completed. �
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