期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:178
Robust nonparametric estimation of the conditional tail dependence coefficient
Article
Goegebeur, Yuri1  Guillou, Armelle2,3  Nguyen Khanh Le Ho1  Qin, Jing1 
[1] Univ Southern Denmark, Dept Math & Comp Sci, Campusvej 55, DK-5230 Odense M, Denmark
[2] Univ Strasbourg, Inst Rech Math Avancee, UMR 7501, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[3] CNRS, 7 Rue Rene Descartes, F-67084 Strasbourg, France
关键词: Coefficient of tail dependence;    Empirical process;    Local estimation;    Robustness;   
DOI  :  10.1016/j.jmva.2020.104607
来源: Elsevier
PDF
【 摘 要 】

We consider robust and nonparametric estimation of the coefficient of tail dependence in presence of random covariates. The estimator is obtained by fitting the extended Pareto distribution locally to properly transformed bivariate observations using the minimum density power divergence criterion. We establish convergence in probability and asymptotic normality of the proposed estimator under some regularity conditions. The finite sample performance is evaluated with a small simulation experiment, and the practical applicability of the method is illustrated on a real dataset of air pollution measurements. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2020_104607.pdf 772KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次