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1. Introduction

Many problems involving extreme events are inherently multivariate, and hence they should be handled with
appropriate multivariate extreme value methods. Of particular interest is the estimation of the extremal dependence
between two or more variables. A full characterization of the extremal dependence between variables can be obtained
from functions like the spectral distribution function or the Pickands dependence function. We refer to [5], and [10], and
the references therein, for more details about this approach. Alternatively, similar to classical statistics one can try and
summarize the extremal dependency in a number of well-chosen coefficients that give a representative picture of the
full dependency structure, like, e.g., the coefficient of tail dependence, see [28]. Modelling tail dependence is a critical
issue in many scientific disciplines. For instance, in finance and actuarial science an important problem is to estimate
very large quantiles of the distribution of the sums of possibly dependent risks, see, e.g., [1]. In environmental science,
studying dependence in extreme levels of pollutants like ozone, particulate matter, carbon monoxide and temperature
is important as combined high levels of these variables may pose a major threat to human health, see, e.g., [17]. In this
paper, we will consider robust and nonparametric estimation of the coefficient of tail dependence when there are random
covariates.

Let (Y, Y®) be a bivariate random vector recorded along with a random covariate X € RP. The covariate X has
density function fy with support Sy C RP, having non-empty interior. The continuous conditional marginal distribution
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functions of YU) given X = x are denoted by Fi(-1x),j = 1,2, and the joint conditional distribution function of the pair
satisfies that for all x € Sy and y € [0, 1]

Pr {1 —F(YDR) <y, 1= F(Y?)x) < y‘X = x} = C(x)y® {1 n n(lx)amx)} ,

where n(x) € (0, 1] is the conditional tail dependence coefficient, and |§(-|x)| is a regularly varying function in the
neighborhood of zero with index 7(x) > 0. This model is the cornerstone of the paper. It is very general and has
been already used in [15,16], among others. It can be viewed as a Hall-type model (see [24]) adjusted to the covariate
framework, and as such, all the parameters and functions involved in it, depend on the covariate position x. In this paper
we focus on the estimation of n(x), and introduce a nonparametric estimator, which is obtained from local fits of the above
model in a neighborhood of x, a point of interest in the covariate space. In the unconditional case, several practically well
performing estimators for the tail dependence coefficient have been introduced, see, e.g., [4,7,14,15,30,31].

Our aim in this paper is to estimate the conditional tail dependence coefficient in a robust way, to prevent possible
isolated outliers from completely disturbing the estimate. In the multivariate context, observations can be outlying with
respect to the dependency structure, in the sense that they do not follow the pattern set by the majority of the data,
and hence they disturb the estimation of the dependency structure. Note that such outliers are not necessary marginal
outliers. To achieve robustness, we will use the idea of the density power divergence introduced by [2]. In particular, the
density power divergence between density functions h and g is given by

1 a 1 o 1pl+a
Auhg) ::{ L g™ m — (14 2)g*hy) + thteydy,  a >0,

h(y) _ (M
JeIn g(y)h y)dy, a =0.

Here h is assumed to be the true (typically unknown) density of the data, whereas g is a parametric model, depending on a
parameter vector @ which is determined by minimizing the empirical version of (1). The resulting estimator will be called,
in the sequel, minimum density power divergence (MDPD) estimator. In the present paper we will adjust this criterion
to the local estimation context with focus on estimating conditional extreme dependence. At a general level, one can say
that the usefulness of robust methods in extreme value statistics has been clearly pointed out by [11]. Robust estimation
methods have been successfully applied to tail index estimation (see for instance [12,19,26,27,33,34]) and conditional tail
index estimation (for instance [13,22]). [15] used this MDPD criterion to obtain a robust estimator for », but in a context
without covariates. To the best of our knowledge, robust nonparametric estimation of the conditional coefficient of tail
dependence has not been considered so far in the extreme value literature.

The remainder of the paper is organized as follows. In Section 2, we simplify the problem to the case where the
conditional marginal distributions are known and we prove the existence, convergence in probability and asymptotic
normality of the MDPD estimator of the conditional tail dependence coefficient. Then in Section 3, the realistic situation
where the margins are unknown is considered and similar results are established. The efficiency and robustness of our
MDPD estimator are illustrated in a small simulation study in Section 4 and on a real dataset on air pollution in Section 5.
Finally, all the proofs are postponed to the Appendix.

2. Case of known margins

In this section, we assume that the conditional marginal distribution functions F;(-|x) and F,(-|x) are known.
Define Z := min { )}. Direct computations yield for all x € Sy

1 1
1-F(Y(D1X)* 1-F(YR)|X
_ _ 1 1
Fz(z|x) :=Pr(Z > z|X = x) = C(x)z @ {1 + (X)(Sz(zlx)} s (2)
n
where

8z(z|x) =6 <1‘x) .
z

Here |87(-]x)| is a regularly varying function at infinity with index —z(x), which is additionally assumed to be normalized,
i.e., such that

8z(z]x) = A(x) exp [/z e(ulx)du} , (3)
1

u

with A(x) € R and &(z|x) - —1(x) as z — oo.

Note that the conditional distribution of Z, given X = x, satisfies Condition (R) in [13] with second order parameter
p(x) := —t(x)n(x). Thus, one can approximate the conditional distribution of Z/u, given Z > u, where u denotes a high
threshold value, by the extended Pareto distribution given by

1
2N)
G(z;n,tS,p)Z[ 1_{2(1+‘S_82n)} 22 h

z<1,

)
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and density function

1

,’7,1 P 7%7] P
szns =] o {1+o(1-20) T [1+sfi-(142)27)]. 251,

0, z<1,

where n > 0, p < 0, and § > max (—1, n/p).
Indeed, as shown in [6], we have

Frluzlx) —

= — G{z; n(x), 8z(ulx), p(x)}| = o(8z(ulx)) if u — oo.
Fz(ulx)

Clearly, based on this result, one can obtain an estimator for n(x) by fitting the extended Pareto distribution to the relative
excesses over a high threshold.

Let (X1, Z1), ..., (Xn, Zy) be independent copies of the random vector (X, Z). We develop a nonparametric, robust and
asymptotically unbiased estimator for n(x) by fitting g locally to the relative excesses Z;/u,, i € {1, ..., n}, by means of
the MDPD criterion, adjusted to locally weighted estimation, i.e., we minimize

- 1 ¢ * 1 Z
Au(n, 823 p) == Y Kny(x — Xi) {f g (z; , 8z, p)dz — (1 + ) g (—'; n. 8z, p)} Lz un):
n o1 1 o Uy

in case « > 0 and

Ao, 873 p) = —*ZKhn X— X)lng( im0z, >1(z,~>un),

i=1

in case o = 0, where Kj,(x) == K(x/hy)/hb, K is a joint density function on RP, h,, is a non-random sequence of bandwidths
with h, — 0if n — oo, 1) is the indicator function on the event A and uj, is a local non-random threshold sequence
satisfying u, — oo if n — oo. Note that in case o = 0, the local empirical density power divergence criterion corresponds
with a locally weighted log-likelihood function. The parameter « controls the trade-off between efficiency and robustness
of the MDPD criterion: the estimator becomes more efficient but less robust as « gets closer to zero, whereas for increasing
o the robustness increases and the efficiency decreases. Note that we only estimate n(x) and 8z (u,|x) with the MDPD
criterion, while the second order parameter p(x) will be fixed at some value. Fixing second order parameters like p(x) here
at some value is a common practice in extreme value statistics, and was also proposed in [3,18], and [23]. Alternatively,
one can replace p(x) by an external consistent estimator. However, the estimation of p(x) in a robust way is still an
open problem, and moreover, using an external consistent estimator rather than a canonical value, does not, in general,
improve the performance of the final MDPD estimator in practice. For all these reasons, we only use a canonical value for
the parameter p(x) in the sequel.
The MDPD estimators of {n(x), ;(u,|x)} satisfy the estimating equations

© 0g(z; n, 8z, p)
ZKh,. — X ]l(Z,>un)/ g(z; , 8z, p)——— 2 0dz
1

an
Zi .
13 v (7 og (;, n, 8z, P)
_= ZKhn(x —Xi)g —310,8z,p | ————"1(z>u) (4)
n : Up 377
>~ 0g(z; n, 8z, p)
ZKhn X — X, 1(Z>u”)/ 8%(z; n,Sz,p)TZdZ
1 A
1 o (Z g (f—n n,Sz,p)
_Z ZKhn(X —Xi)g —310,08z,p | —————"Lz>un)- (5)
N3 Un 9%

The following statistic is crucial for studying the asymptotic behavior of the estimators. Set In; x := In max(x, 1), x > 0,
and

z\ Z\'
Ta(K, s, t]X) : ZK,,n —X) Iy =% ) 1),
n

n

where s < 0 and t > 0. The motivation for considering this type of statistic is that the estimating equations (4) and (5)
only depend on statistics of this form. Note that In, x is introduced to ensure that (Iny Z;/u,)* is always well defined (t
is nonnegative, not necessary integer).
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Due to the regression context, we need the following classical Holder-type conditions. Here || - || denotes some norm
on RP.

Assumption (7). There exist positive constants My, , Mc, Ma, M,,, M,, &y, , 8c, 8a, 8,, and &, such that for all (x, z) € Sx x Sx:
(%) — fx(2)] < My llx — 2] %, |C(x) — C(2)| < Mcllx —z]|%¢. JA(X) — A(z)| < Mallx — 2[4, [n(x) — n(z)| < M, |x —z||* and
supy.1 [e(ylx) — e(y|2)l < Mellx — z[1%.

Also, the following assumption, standard in the context of local estimation, is required on the kernel function.

Assumption (K1). K is a bounded density function on RP, with support Sk included in the unit ball of RP.
In order to establish the asymptotic normality of the consistent sequence of solutions {7,(x), §7.,(x)} of the estimating
equations (4) and (5), we introduce

4 - ToK, s, j il ,
S0(s) = y/ NhF (uty ) () [ LY {]_JS'Z:(’;Q)}M] je0,1,2,3)

Fz(unlx)fx(x)

where we denote by ng(x), resp. po(x), the true conditional tail dependence coefficient, resp. second order parameter.
Hereafter, ‘~~" denotes the convergence in distribution.

Theorem 2.1. Let (X1, Z4), ..., (Xn, Zy) be a sample of independent copies of the random vector (X, Z) where the distribution
of Z, given X = x, satisfies (2) and (3), X follows a distribution with density function fx, and assume (#) and (K1) hold. For
all x € Int(Sx) with fx(x) > 0, we assume that u, — oo and h, — 0 in such a way that hﬁg Inu, — 0, nh2Fz(u,|x) — oo,

= — a5 AS =
VIRRE 7 (Un[%)87(Un]X) — 2 € R, v/NHF 7 (un OB "¢ = 0, /nh2F 7 (unx)h" Inu, — 0. Then in ¢*([S, 0]), S < O,
(SO, sV s, 53y o (8@, M, 52, §3)y, forn — oo,

a Gaussian process, with, for s € [S, 0], mean functions

Oeen = — % /Folx)ity 1 1 _ 1 — po(x) .
B8P = —hv Xl (X)|:{1—SUO(X)}j+1 (1= po(x) —smoopr1 |- 1 €10 1230

and covariance functions given by

G+ k™ x)IK |12
{1 — (514 $2)mo(x)} 1 H+K°

Note that [13] obtained a similar result, though under their high level assumption called (M), which is avoided in the
present paper.

Based on this theorem, one can now establish the existence, convergence in probability and asymptotic normality of
the MDPD estimators of {1o(x), 7(u,|x)}, when suitably normalized. This theorem is similar to Theorems 2 and 3 in [13]
with our new conditions given in our Theorem 2.1, and thus the proof is omitted.

Cov{SY¥(s1), SW(s,)} = (G, k) € {0, 1,2, 3)2.

Theorem 2.2. Let (X1, Z,),...,(Xn, Zy) be a sample of independent copies of the random vector (X, Z) where the distribution
of Z, given X = x, satisfies (2) and (3), X follows a distribution with density function fx, and assume (H) and (iC1) hold.

For all x € Int(Sx) with fy(x) > 0, let u, — oo and h, — 0 in such a way that nhyF(u,|x) — oo and K" Inu, — 0.
Then with probability tending to 1, there exist sequences of solutions {7a(x), §7.,(x)} of the estimating equations (4) and (5),

with p fixed at po(x) such that {’n\n(x),'gzrn(x)} LN {no(x), 0.

If additionally,
/ NHRFZ(un)X) 87(unlx) —> A € R, (6)
nhEF (i, x) b —> 0, 7)

nREF(uax) B Inu, —> 0, (8)

EF )| 5,7 T8 ] (0,6 Bl Z (BT 01 ).

then

for n — oo, where the matrix B{po(x)} is defined by

 ang){1+m0() _
[+l 1+ (0] 12 Mo(x) 0 !
X) >
ano(X)po(X){1+mno(x)}
~ el notoli—pomattmgoon  10(%) —mo(){1 = po(x)} 0

B{po(x)} = ny* %
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the elements of the symmetric (4 x 4) matrix X'{po(x)} are given by

ool = K13, oo = —— Loy = e

1(00(x)) : 2 RO T T (1 + nox))” 2T 1 1 201 + no(x))

o31(po) = IKT o3 pol00) i= IK:

SO T o0+ e no)” 72T T 0() + 2a(T + 10())°
B IK |2 _ no()IIK |13

oslpol¥)) = 77 2p0(x) + 20(1 + no(x))’ o= oy (X))’
I3 _ oK 3

7o) = 201 + o) 7Y T 00 + 2001+ naG)P
, 2n3(0) K113

o44(po(x)) :

T 1+ 2001+ no(0)P
and those of the symmetric (2 x 2) matrix C(po(x)) by

L Ul )
[1+ {1+ no(x)}1?
Po(X){1 = po(x)}[1 + {1 4 no(x)} + &* {1 + no(x)}*1 + & po(x){1 + 1o(x)}>
[T+ {1+ no(x)}HP[1 — po(x) + {1+ mo(x)}1?
{1 = po(x)} 5 (%) + apg(X){1 + no(x)} {1 + 1o(x)} — po(x)]

[14 a1+ no(x)}[1 — po(x) + {1+ no(x)}[1 — 2p0(x) + {1+ no(x)}]°

Note that the expected value of the limiting random vector in Theorem 2.2 is zero, whatever the value of A. The
estimator is therefore said to be asymptotically unbiased.

The following proposition deals with the behavior of the MDPD estimators {ﬁn(x),’é\z,n(x)} when the parameter p(x) is
fixed at some value p < 0, possibly mis-specified.

Cir{po(x)} :

Corlpo(X)} == np“~2(x)

)

Coa{po(x)} = 0y (%)

Proposition 2.1. Under the assumptions of Theorem 2.2, but now with p fixed at o in the estimating equations (4) and
(5), with probability tending to 1, there exist sequences of solutions {1,(x), 8z..(x)} of the estimating equations such that

(%), 320000} = {10(x), 0}.
If additionally (6), (7) and (8) hold, then

8Z,n(x)
for n — oo, where the elements of the vector d are the following

apo(x){1 + no(x)}
no()[1 + {1+ no()N[1 — po(x) + {1 + no(x)}]’
[ee{1 + no(x)} — B]po(x)
no()[1 — P + {1+ no(x)}[1 — po(x) = 7 + a{1 4+ no()}1’
Pol(1 = po(x)} — @ po(){1 + o)}
[1+ {1+ no()}2[1 = po(x) + a{1 4 no(x)} 12’
Again the proof of Proposition 2.1 is similar to the one of Proposition 1 in [13] and thus is omitted. Note that in case
0 is mis-specified, then the mean of the limiting normal distribution is not necessarily zero, and hence one possible loses
the asymptotic unbiasedness. However, as will be clear from the simulations, even though 7 is mis-specified, the proposed
MDPD estimator performs well with respect to bias. Also note that the asymptotic variance expression in Proposition 2.1
is the same as that in Theorem 2.2, though with pg(x) replaced by 7.

ottFtun )| "1 | (<2 I B, C PRI TP DI F)).

d] = 0, dz = -

d3 = -

d4 =

3. Case of unknown margins

In this section, we consider the general framework where both F;(-|x) and F,(-|x) are unknown conditional distribution
functions. We want to mimic what has been done in the previous section. To this aim, we define

- 1 1
Z = min s s
{ 1—Fa(YDIX) 1 — Fn,z(Y(z)IX)}
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for suitable estimators Fyj of F;, j = 1, 2. Then similarly as in the previous section, the statistic

1g Z\'(, z\
T — Ay =i i) B
To(K, s, thx) = Z;Khn(x — Xi) <u> (m+ uﬂ) 15 o)
1=

is the cornerstone for the MDPD estimator, denoted 77,(x). In particular, the main result relies essentially on the asymptotic
properties of this statistic, and so the idea will be to decompose

[ Tk, s, jix) )

o _
nhyFz(un |x)fx (x) | Frlulfi(x) (1= smo(i*! |

into the two terms

T(K,s,jlx) i)
| Fr(unx)fx(x) (1= sno(x)P+" |

+ nhﬂFz(unlx)fx(x){ DK Tl 5,000 | ©

nhiFz(un|x)fx(x)

Fz(un|X)fx(x)  Fz(un|x)fx (%)
The first term can be dealt with using the results from the previous section, whereas we have to show that the second
term is negligible for all s < 0 with j € {0, 1, 2, 3} or (s, j) = (0, 0).
In the sequel, we will use the empirical kernel estimator of the unknown distribution functions

Doy Ke(x — XLy,

Yo Ke(x —Xi)
where the bandwidth ¢ := ¢, is a positive non-random sequence satisfying ¢, — 0 as n — oo. Here we kept the same
kernel K as in the divergence objective function, but of course any other kernel function can be used.

Before stating our main results, we need to impose again some assumptions, in particular a Holder-type condition on
each conditional marginal distribution function F; similar to those imposed in Section 2.

, Je{1,2},

Fn.j(Y|x) =

Assumption (F). There exist Mg, > 0 and f > 0 such that |F(y|x) — F(y|z)] < Mglix — zllaFf, for all y € R and all
(x,z) € Sx x Sx,and j =1, 2.

Concerning the kernel K a stronger assumption than (1) is needed. Denote by B,(r) the closed ball with center z and
radius r with respect to ||.]|.

Assumption (K,). K satisfies Assumption (1C1), there exist §, m > 0 such that By(8) C Sk and K(u) > m for all u € By(8),
and K belongs to the linear span (the set of finite linear combinations) of functions k > 0 satisfying the following property:
the subgraph of k, {(s, u) : k(s) > u}, can be represented as a finite number of Boolean operations among sets of the form
{(s, u) : q(s, u) > @(u)}, where q is a polynomial on R? x R and ¢ is an arbitrary real function.

The latter assumption has already been used in [20] or [21]. As stated in these contributions, it is satisfied by
K(x) = ¢{a(x)}, a being a polynomial and ¢ a bounded real function of bounded variation (see, e.g., [29]). This is also
the case, e.g., if the graph of K is a pyramid (truncated or not), or if K = 1[_1 1, etc. In particular, this Assumption (K;)
allows us to measure the discrepancy between the conditional distribution function F; and its empirical kernel version
Fnj, as stated in the following lemma established by [17].

Lemma 3.1. Assume that there exists b > 0 such that f(x) > b, Vx € Sx C RP, f is bounded, and (KC;) and (F) hold. Consider
a sequence c tending to 0 as n — oo such that for some q > 1

[Inc|?

ncP
Also assume that there exists an € > 0 such that for n sufficiently large

inf A[{u € Bo(1) : x — cu € Sx}] > ¢,
X€eSx

where A denotes the Lebesgue measure. Then, for any 0 < § < min(éf,, &, ), we have

1 q
sup  [Fas(y1%) — iyl = op (max( el ,c“)>,je{1,2}.
nc

(y,x)eRx Sy
We are now able to study the second term in (9).
Theorem 3.1. Let (X1, Z4), ..., (Xn, Zy) be a sample of independent copies of the random vector (X, Z) where the distribution

of Z, given X = x, satisfies (2) and (3), X follows a distribution with a bounded density function fy, and such that there exists
b > 0 satisfying f(x) > b, Vx € Sx C RP. Assume also Assumptions (H), (K2) and (F).
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Consider now a sequence c tending to 0 as n — oo such that for some q > 1
[Inc|?

ncP
Also assume that there exists an & > 0 such that for n sufficiently large

inf A[{u € Bo(1) : x — cu € Sx}] > &,
XxeSx

where A denotes the Lebesgue measure. Let u, — oo and h, — 0 in such a way that for any § € (0, min(d,, Jf,))

Incl

nhPr, := nh? max( Inc| ,c5> — 0, (10)
nce

nhPF 7 (un|x) —> o0, (11)

then for any s < 0 with j € {0, 1, 2, 3} or (s, j) = (0, 0), we have
nhh
Fz(un|x)fx(x)

Using Theorem 3.1 we can now establish the main theorem of this paper, stating consistency and asymptotic normality
of the conditional 5 estimator, in case of general conditional marginal distribution functions, which are estimated with
kernel estimators.

{Ta(K. s.j1x) — Ta(K, 5. jIx)} = 0p(1).

Theorem 3.2. Under the same assumptions as in Theorem 3.1, let x € Int(Sx) and suppose that hfl”M" Inu, — 0. Then with
probability tending to 1, there exist sequences of solutions {in(x), 57.n(x)} of the estimating equations (4) and (5) such that

{in(X), 82.(X)} —> {10(x), O}.
If additionally (6), (7) and (8) hold, then

— NMn(x) — no(x 1~y ~ oy~ ~ ~
fFtuni)| ) | (e PBEML C BGIZ GBI P)
,n
The result of Theorem 3.2 follows directly from the decomposition (9) and Theorem 3.1, and therefore we omit the
proof of it from the paper.
4. A simulation study

Our aim in this section is to illustrate the performance of our robust conditional tail dependence coefficient estimator
with a small simulation study in case p = 1. The joint conditional distribution function of the pair has the following form:

Pr [1 —Fi(YVx) <y1,1 = B(YPx) < J/2’X = x] = C(y1, y21%),

where C(., .|x) is one of the three copulas:
Case 1: The BB6 copula in Joe [25, p. 152] defined for (x) > 1 and ¢(x) > 1, as follows

1

Clyn, yal) = 1— [1 —exp {— ([=n {1 ==y @} 4 [=In {1 = (1 = o0} ) ” o

For this model exact independence is obtained for 6(x) = 1 with ¢(x) = 1, and perfect dependence is achieved if either
6(x) — oo or ¢(x) — oo. Wge can easily see that in case 6(x) > 1, this model satisfies our model assumption (2) with
. e
n(x) =2 @, C(x) = {O(x)}zm” and t(x) = 1. We take X ~ U(1, 6), 8(x) = 2 and ¢(x) = x.
Case 2: The Farlie Gumbel Morgenstern (FGM) copula defined for ¢(x) € (—1, 1], as follows

Cy1, y21%) = y1y2 {1+ ¢(x)(1 = y1)(1 = y2)} .

Exact independence is obtained for ¢(x) = 0, and perfect dependence is not attainable under this model. Clearly, for
Z(x) # 0, our model assumption (2) is also satisfied, with n(x) = 1/2, C(x) = 14+¢(x) and 7(x) = 1. We take X ~ U(—0.9, 1)
and ¢(x) = x.

Case 3: The BB9 or Crowder copula in Joe [25, p. 154] defined for a(x) > 0 and 6(x) > 1, as follows

C(y1, y21x) = exp (— [{ae(x) — In(y1)}*™ + {ae(x) — In(y2)}"™ — {a(x)}"(”]% + a(X)) .

Exact independence is obtained for #(x) = 1 or a(x) — o0, and perfect dependence for 6(x) — oco. We can check that this

model has the form of (2) with n(x) = 2 H<1X), C(x) = exp [a(x) {1 — Zﬁ ” but 7(x) = 0. That means that this case does
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Fig. 1. Scatterplots of simulated datasets from BB6 (left), FGM (middle) and BB9 (right), when there is 5% contamination (grey circles).

not fit our model assumption, but we use it here to show the robustness of our approach in case our main assumption is
violated. We set X ~ U(1, 6), a(x) = 1 and 0(x) = x.
These copula models are combined with unit Fréchet marginal distributions, leading to

F(y1, y21x) = exp(=1/y1) + exp(—1/y2) — 1+ C{1 — exp(—1/y1), 1 — exp(—1/y2)Ix}.

Contamination will be introduced according to the following mixture model

Fe(y1,y21%) = (1 — €)F(y1, y2(X) + eFc(y1, y21x),

where ¢ denotes the fraction of contamination, and F, is the contaminating distribution function. We take here
; -1
Fe(y1, yolx) = emmin0iy2)=al =y y) > g,

i.e,, the distribution function of completely dependent unit Fréchet random variables, translated by a. This choice for F,
means that we put contamination along the diagonal, which corresponds to perfect dependent contamination. We take
for a quantile 0.999 of the unit Fréchet distribution, and consider ¢ = 0, 5% and 10%. In Fig. 1 we show the scatterplots
of datasets generated from the BB6, FGM and BB9 models, with ¢ = 0.05. In these plots, the non-contaminated sample is
represented as black circles whereas the contaminated pairs are represented as grey circles. When focusing on the main
data, the BB6 and BB9 models have clearly stronger dependence in their extremes than the FGM model, where for the
latter the large values occur closer to the axes. For all models this contamination is quite severe, but the situation is worse
for the FGM model, which has weaker dependence in its extremes compared to the BB6 and BB9 models. We refer to the
discussion of the simulation results below.
Concerning the kernel function K, we take the bi-quadratic function
15
K(x) = E(l — XY Lixe(-1.1)-

We have also considered other kernels like the Epanichnikov and triweight kernel functions, and the results are insensitive
with respect to the kernel choice. To compute our estimator 7,(x), two sequences h, and ¢ have to be chosen. Concerning
¢, we can use the following cross validation criterion introduced by [35], and used in an extreme value context by [8,9]
and [17]: forj € {1, 2}

n

n 2 er:—l ki Ke(x — Xi)1, 0
. ~ - ~ -1, ,
¢j := argmin Z Z {Jl<yi@5ylg)) - Fn,i,j(Y,E”|Xi)} , where F, _;(y|x) .= k

D ket Ke(x — Xi)

and C, is a grid of values of c. We take ¢, = Ry x {0.05,0.10, ..., 0.30}, where Ry is the range of the covariate X.
The bandwidth parameter h, is determined from the condition nh,/|Inc|?/(nc) — 0, by taking h, = Rx./c/(n|lnc|*),
where « > g and ¢ := min(cy, ¢z). Next to h, and ¢, our estimation procedure also requires the selection of a threshold
parameter u,. As usual in extreme value statistics, this parameter will be set at the (k 4 1)th largest of the Z for which
the X coordinate is in B(x, hy).

As mentioned before, we only estimate n(x) and §z(u,|x) with the MDPD method, while the parameter p is fixed at
some value. Here we set p = —1, which is a mis-specification.

For each of the above distributions we simulate N = 500 samples of size n = 1000. The results of the simulation
experiment are reported in Figs. 2 till 7. In Fig. 2 we show the mean of 7,(x) as a function of k for « = 0 (solid line), « = 0.5
(dashed line) and o = 1 (dotted line) for the BB6 copula. The true value of 7 is represented by the horizontal reference
line. The columns of the figure represent three different values of x, while the rows correspond with the contamination
percentages, 0%, 5% and 10% from top to bottom. Fig. 3 displays the empirical mean squared error (MSE) as a function of

<y)

)

ceC,
€ i=1 k=1
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Fig. 2. BB6 simulation with (shifted) diagonal contamination. Mean of 7j,(x) with & = 0 (solid line), @ = 0.5 (dashed line) and & = 1 (dotted line),
as a function of k at x = 2 (left), x = 3 (middle) and x = 4 (right). From top to bottom: 0%, 5% and 10% of contamination.

k, but has otherwise a layout that is similar to Fig. 2. Concerning the selection of h,, and ¢, we note the following. In a first
step we compute the optimal h, and c for each dataset using the above mentioned cross-validation criterion. This implies
that the range of k varies from one dataset to the other, so means and MSE's would be based on a different number of
observations when plotted as a function of k. In order to avoid this we take the median of the h, and c values obtained in
the 500 simulations and use this for all estimations. Figs. 4 and 5, and Figs. 6 and 7, show the corresponding results for the
Farlie Gumbel Morgenstern and BB9 copula, respectively. From the simulation we can draw the following conclusions:

e In absence of contamination, the estimators show generally a quite stable pattern for a wide range of k, close to
the true value of 7, despite the mis-specification of the parameter p. In terms of MSE we see that, the estimator
with @« = 0, which corresponds to maximum likelihood, performs best, followed by « = 0.5 and ¢ = 1. This
can be explained as follows: in terms of bias the estimators with different values of o perform similarly, while for
the variance we have that « = 0, corresponding to maximum likelihood, performs best. It is well-known that the
efficiency of the MDPDE decreases with increasing «, see, e.g., [2].

e When there is contamination, then the non-robust estimator (¢« = 0) is clearly affected, with a sample mean that
can be far from the true value, while the robust estimators generally stay closer to the true value. The estimator
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Fig. 3. BB6 simulation with (shifted) diagonal contamination. MSE of #,(x) with « = 0 (solid line), « = 0.5 (dashed line) and « = 1 (dotted line),
as a function of k at x = 2 (left), x = 3 (middle) and x = 4 (right). From top to bottom: 0%, 5% and 10% of contamination.

with « = 1, which offers the highest robustness, performs best in terms of bias. In terms of minimal MSE, using
a = 0.5 gives the best result. The advantage of « = 1 in terms of bias is offset by its increased variance compared
toa = 0.5.

e The performance of the estimators deteriorates under increasing contamination percentages.

e For the BB6 distribution, the effect of the contamination is strongest for the smaller x values. This could be expected,
as the dependence in the data is weakest at the smaller x. The dependence increases with x, and therefore at x = 4
the effect of contamination on the diagonal is least.

e The Farlie Gumbel Morgenstern distribution has n = 0.5, corresponding to near independence. For this distribution,
contamination on the diagonal is clearly very severe.

e For the BB9 distribution, which does not satisfy our model assumptions, we still have very good estimation results,
which also illustrates the robustness of our methodology with respect to violation of the model assumption. Also
here we see that the effect of the contamination is biggest at the x positions where the dependence in the data is
weakest.

e It appears that our estimate with @« = 0.5 gives some protection against contamination and it seems to be a safe
choice whatever the framework, with or without contamination. Indeed, in case of contamination, we observe that
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Fig. 4. FGM simulation with (shifted) diagonal contamination. Mean of #j,(x) with « = 0 (solid line), @ = 0.5 (dashed line) and « = 1 (dotted line),
as a function of k at x = —0.5 (left), x = 0.5 (middle) and x = 0.8 (right). From top to bottom: 0%, 5% and 10% of contamination.

increasing « from O to 0.5 clearly improves the estimation but increasing « further to 1 does not lead to clear further
improvements, since although it offers a highest robustness, the advantage of « = 1 in terms of bias is offset by its
increased variance compared to o = 0.5. This is in line with the findings of [15] in the context without covariates.

5. A real data analysis

In this section, the proposed methodology is applied to a dataset of air pollution measurements. In environmental
science, one needs to consider simultaneous high levels of several pollutants, possibly combined with high temperatures,
as these may pose a major threat to human health. Estimation of the extreme dependence is thus of crucial importance in
this context. We consider the data collected by the United States Environmental Protection Agency (EPA), publicly available
at https://aqsdrl.epa.gov/aqsweb/agstmp/airdata/download_files.html. The dataset under consideration contains monthly
maxima on, among others, temperature, and ground-level ozone, carbon monoxide and particulate matter concentrations,
for the time period January 1999 to December 2013. These data are collected at stations spread over the U.S. We will
estimate the extreme dependence between ground-level ozone and particulate matter concentrations, conditional on the
covariates time and location, where the latter is expressed by latitude and longitude. The method is implemented with
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Fig. 5. FGM simulation with (shifted) diagonal contamination. MSE of #,(x) with « = 0 (solid line), « = 0.5 (dashed line) and o = 1 (dotted line),
as a function of k at x = —0.5 (left), x = 0.5 (middle) and x = 0.8 (right). From top to bottom: 0%, 5% and 10% of contamination.

the same cross-validation criteria as in the simulations, though for convenience we rescaled each covariate to the interval
[0, 1]. For practice we recommend rescaling the covariates in case they are measured on different scales, since by the
construction of the estimator, and also in the theoretical analyses, only a single bandwidth parameter is used. As for the
kernel function, we used the bi-quadratic kernel, generalized to the case p = 3, as follows

1 X
Kp, (x) = FK (HFTH) ,
n n

where x € R3, and ||.|| denotes the Euclidean norm. In Fig. 8, we show the estimate of n(x) with « = 0 (solid line),
a = 0.5 (dashed line) and « = 1 (dotted line) for the city of Los Angeles at different points in time. The reported
estimate is median{#,(x); k = n*/2,...,n* — 1}, where n* denotes the number of observations in B(x, h,). Overall, the
extreme dependence between ground-level ozone and particulate matter concentrations shows a seasonal pattern, where
the dependence is typically stronger in summer than winter. For some months the estimate with « = 0 differs noticeably
from those obtained with @« = 0.5 and « = 1, which indicates the presence of observations that are disturbing for the
estimation of the dependence structure. In Fig. 9, we show the estimate 77,(x) with @ = 0 (solid line), « = 0.5 (dashed
line) and o« = 1 (dotted line) for months 59 (November 2003) and 100 (April 2007) as a function of k. For month 59,
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Fig. 6. BB9 simulation with (shifted) diagonal contamination. Mean of 77,(x) with & = 0 (solid line), « = 0.5 (dashed line) and « = 1 (dotted line),
as a function of k at x = 2 (left), x = 3 (middle) and x = 4 (right). From top to bottom: 0%, 5% and 10% of contamination.

the robust estimates show a stable pattern around n(x) = 1 for the second half of the k range, while the non-robust
estimate shows nearly no stability as a function of k. On the contrary, for month 100, the robust estimates are below
the non-robust estimate. Again the robust estimates show a stable horizontal pattern for the second half of the k range,
which is not present for the non-robust estimate. In order to gain some further insight in the differences between the
non-robust and robust estimates for these two months, we also constructed the Pareto quantile-quantile plots of the V4
for which the corresponding X coordinates belong to B(x, h,), see Fig. 10. In case a Pareto-type model fits the data, the
Pareto quantile-quantile plot will be linear in the largest observations with a slope reflecting n. We refer to [5], section
2.3.5, for a general discussion of Pareto quantile-quantile plots. For month 59 the quantile-quantile plot bends down for
the largest ten Z, which can explain why the non-robust estimate is below the robust estimate. The quantile-quantile plot
for month 100 shows a clearly outlying upper observation, which apparently pulls the non-robust estimate up compared
to the robust estimates. Although identification of outlying observations is not the main topic of this paper, such local
Pareto quantile-quantile plots can be used in conjunction with the estimates of n obtained for different values of « to
pinpoint suspect observations.
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Fig. 7. BB9 simulation with (shifted) diagonal contamination. MSE of #,(x) with « = 0 (solid line), @« = 0.5 (dashed line) and o« = 1 (dotted line),
as a function of k at x = 2 (left), x = 3 (middle) and x = 4 (right). From top to bottom: 0%, 5% and 10% of contamination.
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Appendix. Proofs

Proof of Theorem 2.1. The first step consists to show that, under our assumptions,
E{Tu(K, 5, jIX)} = fi()F 2 (un| X (x)!
o < 1  8z(unlx) |: 1 _ 1 — po(x)
{1- Sno(?g)}j? no(x)  L{1—sno(x)P*T {1 — po(x) — sno(x)y*!
+o (h,{xA C) e (hi" In un)) ,

} + 0(8z(un X))

where the o(8z(u,|x)) and O(.) terms are uniform in s € [S, 0].
To obtain this result for the case j > 0, use the following decomposition

E(To(K. 5,jx)} = fx(x) / P o{unz i)z
1

+/ K(v)/ P(2)Fz(unz|X)dz{fyx(x — hyv) — fx(x)}dv
Sk 1
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5 / K(v) / PO F (tnzlx — hyv) — Fo(unz|)}dz dv
Sk 1

+ K(v)/ P(2){Fz(unz|x — hyv) — Fz(unz|X)}dz {fx(x — hyv) — fx(x)}dv,
1

Sk

where p(z) = sz~ !(Inz) + jz*~'(Inzy~'. Each term can be treated using our Hoélder-type conditions, which imply in
particular that, for n large enough, z > u,, and some constants My, M,, M3

Fz(zlx — hyv)
Fz(z|x)

combined with a slight modification of Proposition 2.3 in [6] which ensures that

-1

3 e
<M {hﬁf 2 B Inz 4 (842 %) + (8,(z]x)|2M3 M e lnz} (12)

1
sup z 1)
z>1

FeZ) _ e ). (). p(x)
FZ(un|X)

In case j = 0 we obtain

E{T,(K,s, 0|x)} = /

Sk

= 0(|8z(un|x)[) as up — oo.

K(v) fmp(z)fz(unzlx — hyv)dzfy(x — hyv)dv
1

+ K(v)fz(u,,|x—hnv)x(x—hnv)dv,
Sk

where p(z) = sz°~!. Both terms can be analysed with decompositions similar to the ones used for the case j > 0.
Then we can follow the lines of proofs of Theorem 1 and Corollary 1in [13] in order to achieve the proof of Theorem 2.1.

Proof of Theorem 3.1. First remark that

_onhh {Ta(K. 5.j1%) = Tu(K, 5. j1x)}
Fz(un|x)fx(x)
s 0 — T 5.0 — E T(K 5,00 — Tu(K, 5, 10}
Fz(un|x)fx(x)
b
%E {Tu(K. s, jlx) — Tu(K, 5. jIx)}
=! Rp1 + Rn2.

We will study the two terms R, 1 and R, separately. First, we start with the term R, ;. Define for any s < 0 with
j€]=1{0,1,2,3}or (s,j) = (0,0)

. hP .

(s.4) n (s.4)
& W, y2,v) = | =——————Kp,(x — v)q: 5 (V1, Y2, V)

& F(ua|%)fi () e
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with
J Ze(Y1, Y2, v) : Ze(Y1, Y2, v) !
q(;,f,)(}’hJ’z,U) = : £ In = Lz, (1,92, 0)>tin}
Uy Uy
Zs(y1, Y2, V) min{ ! ! }
1,Y2,0) = , s
) 11— &1 y2. 0 1= &1, Y2, )]

and measurable £ € H := {£ = (£1,£); € : R x R x Sy — R?}.

For convenience, denote & = (F,1,F;2) and & = (F;, F). According to Lemma 3.1, 1, !|&, — &| converges in
probability towards the null function Hy = {0} in H, endowed with the norm ||y = [|&1llec + |&2]lco for any & € H.
Consider now the class

g8N(b) =g, ., — 8o 1 € H.||E |y < b,

with envelope function Ggf’j)(b). Our aim is to apply Theorem 2.3 in [32]. To reach this goal, we need to introduce some
notations. Let P denote the law of the vector (Y(V), Y?)  X) and define the expectation of any real-valued measurable
function f under P by Pf = [ fdP.

We have now to show the two following results:

Assertion 1. For any s < 0 with j € J or (s, j) = (0, 0), we have
V/nPGEA(b,) — 0 for all b, — 0,

and
Assertion 2. For any s < 0 with j € J or (s, j) = (0, 0), we have
P[{GS(b)}*] — 0.

Proof of Assertion 1. We start to consider the case where s < 0 with j € J. As a first step we derive an envelope function
for £5(b,). We have

(s.J) (s.3)

o0 o0
’qégo.;_rng,n —Qgyn / p(a)ﬂ(un<una<z‘go+ms)]1(250_”“5>un)da - / p(a)ﬂ(un<una<ZEO)1(ZEO>un)da
1 1

H1G=0)LZgy rpe >un) — LG=0)LZg, >un)

/ 1p(@)
1

F1(j=0) | L(Zgyrpe >un) — L(Zgy>un)

da

IA

Lun <ttn@<Zggarne) LZegre >un) — Lun<una<zey) L(ze, >un)

[eS)
=< / |p(a)| ‘]l(un<una<250) - ﬂ(un<una<Z§0+rng) ]1(250>un)da
1

o0
+/] ID(@)] Lun <una<zeysrye) ‘ll(zgoﬂnpun) — L(zgy >un) | 40 + L(j=0) ’1(Z§O+rn§>un) — L(Zgy >un)

o0
< / ID(@)] Limin(Ze, Ze +rye )<una<max(Zey Zeg e )} L(Zeg >un) A0
1

o0
+/ IP(@)] Lun <una<zey +rye) Limin(Zey Zg +rne ) <un<max(Zey Zey e )} 40
1
+ L(j=0) L{min(Zg) Zey rne )<tin <max(Zeg Zeg e )}
Remark now that

(una € [Min(Zs,, Zey 11y ); Max(Zey, Zeyre))
(sware [min min (. ) ()
= (uya € | min { min , ,min( ——, —— |}
[1—F —rmé&| |1 —F —mné&l 1-F 1-F

{min (1= w) (2 w)])
max { min , ,min [ ——,
[1—F — &l 11— F — 1-F 1-FK

1 .
=1 € [min {max (|1 — F; — r&1], |11 — F, — rpé30) , max (1 — Fy, 1 = Fp)};
n

max {max (|1 — F; — r;&1], [1 = F, — &), max (1 — F1, 1 = F)}])
€ [min (|1 - F; — &1, 1 — Fp) ,max (|1 — Fy — mpéq], 1 = Fy)]

C

n
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1 )
U(u p emin(|]1-F —né&l, 1-F), max (|1 - F, — &, 1 —Fz)]>
n

1 1
C( e[l_Fl_rnbnal_Fl+rnbn]>U( e[l_Fz_rnbn’l_Fz+rnbn]>
upa upa
=: Ap,1(a) U An2(a). (14)
Also,

<
L1py— ré1l<gig [1-F2—fn&al<gig) = Il(—,mia—r,.bn<1 —F1<qig+nbn, — gig —tnbn <1—-F2 < glz +rabn)

1(250+rn5 >upa)

IA

]1(1 F1<m+rnbnl F2<un—a+rnbn)

and, taking into account that

1(Z§O>Un) = 1(1—F1<ﬁ,1—F2<ﬁ)’

we obtain
1(Z$0+rné>“na) = ]l{l—Fl<ﬁ(%+rnunbn),l—F2<ﬁ(%+rnunbn)} = ]I(Zgo> %-F::unbn (15)
Thus, combining (13)-(15), we obtain the following envelope for S,(f’j)(bn):
(5d) s >
G(by) = | =————Kp,(x—.) |:/ Ip(a)] 1ia, wa(@) Lze >uy) da
n n Fy (nX)fx (%) : {An,1(a)UAR,2(a)} 1 (Zg >un)
(o]
+/ Ip(a)l 1 w O\ Hn (DA} 48+ L=0)Lia, (1)UAR2(1) | » (16)
1 (ZEO *+fnunbn>
with
(5) nhi >
VnPGE(by) = | =—————— {E | Ky, (x — X) Ip(a)l E I:ﬂ(Anyl(a)UAnyz(a))ﬂ(Zgo>un) X] da
Fz(un|x)fx(x) 1
o0
+E Khn(X — X)/ |p(a)| El1 un ]l(An,l(l)UAn,z(l)} X | da
1 (Zgo . %+rnunbn)
+1(j=0) (Khn(x — X)E [ﬂmn,](nmn.zm} XD}
nhiy </1<( )/Oou)us[ 1 X = x — hyv | daf(x — hyv)d
== . v An,1(Q) VAR 2 (@)} L (Zgy >un) |4 = X — nv] x\X — Npv)dv
Fz(un|x)fx(x) \Js¢ 1 HalAn2 %0
(o]
+/ K(U)/ Ip(a)| E w O\ LAn1(UA (1} X = X — hyv | dafx(x — hyv)dy
S 1 (Zfo o)
nhh
Y1) | K [n{AM (10 (1) ‘x —x—h v]fx(x v ) = = (T 4T, 4+ Ty).
Sk Fz(unx)fx(x)
Consider T;. By the Cauchy-Schwarz inequality
[o¢]
o= [ KD [ 101y Pr(An () U Ana@X = X = oo Faltnbk = hyoMlafi(x — o)
Sk 1
The sub-additivity of probability measures and some straightforward calculations give then
Pr{Au1(a) U A 2(@)1X = X — hyo} < Pr{A, (@)X = x — hyv} + Pr{A, 2(a)lX = x — hyv)
1 1
= /0 ]l(uTaE[Z rabn.zrnbn)) 92 —i—/o l(ﬁe[zfrnbnfzwnbn])dz < 2rpby + 2ryb, = 4ryb,. (17)

Thus

Ty < 24/ FabuF (s %) / Ip(a) |da/ K(v F(itn|x = hyv) (X — hyv)du

Sk FZ Up |X

and hence, by (12) and the Hélder continuity of fx, we have T; = O ( rnfz(un|x)>.
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As for T, use again the Cauchy-Schwarz inequality and (17) to obtain

o0
_ Up
T, < 2y/r;b |a|da/1<v F(x—
2= 2y [ tanda | o JFe (T
. 0 FZ (Uinb x—hnv)
= 2 |r.b,F, (”7 x)/ Ip(a)lda/ K(v) [ nitnb
1+rnun n 1 Sk FZ( X)

1+rnunbn
Note that under our assumptions, r,u, — 0, as n — oc. Thus using (12) and the fact that

)

_ "
FZ (]+rnunbn X

Fz(un|x)

hnv)fx(x — hyv)dv

fx(x — hyv)dv.

— 1, (18)
we have that T, = 0 ( rnFZ(unP())'

By similar arguments, we get T3 = O(r,,) = 0 ( rnfz(unlx)) under our assumptions (10) and (11).
Combining the above

VPG (by) = O (V/nklr,)

Now, we move to the case (s, j) = (0, 0) and use a similar proof. In that case, using (17), we have

hP
JPGOO(b,) = [ = u"mf K(v Pr An (1) UAna(1) ‘x —x—h v]fx(x— hyv)du
n X Sk
nhh

hP
< 4r by, [— / K(0)fx(X — hyv)dv = ( ,"7”)% bn> = o(\/nhﬁrn)

Fz(unlx)fx(x) Js¢ Fz(unlx
which achieves the proof of Assertion 1 in case (s, j) = (0, 0).
Proof of Assertion 2. Again, we start to look at the case s < 0 and j € J. From (16) and straightforward bounds, we

deduce that

. hP o] o]
G < " K2 (x—. { / d } / d
{c$Ib)}) < (e () (X )[ 1 Ip(a)lda 1 Ip(a)lll(zSO un )]l(An,1(1)UAn,z<n) a

+rn unb

o0 o0 o0
+3 {/ Ip(a)lda} / Ip(@)| L, (a1t (@) Lizgy >unyda + {1 + 4[ |p(a)|da} Jlm,,_]u)uAnvz(m] .
1 1 1

Since ffo |p(a)|da < oo, using again the Cauchy-Schwarz inequality combined with (17), we deduce that

(S,') 2 C\/ﬁ 2 DO T L
P I:{Gn](b)} ] (un|X)fX( )/51( K ( )/ |p(a)| FZ <; +rnunb

C -
_ G K?(v / (a)|\/ Fz(un|X — hyv)da fx(x — hyv)dv
Fz(un|x)fx(x) Jsg

Cra
= - hn d 9
* FZ(uTI'x)fX(X) /;1( (v)fX(X v) 0

where C is a constant which can change from one line to each other.

X — h,ﬂ)) dafy(x — hyv)dv

Finally, combining (12) with (18), we deduce that

P [{cgqs,ﬂ(b)}z] = o( Fz(:nlx)> )

The case (s,j) = (0, 0) can be dealt with similarly and leads to

'y
p [{Gggm(b)}z] —0 <Fz(u”lx)) .

This achieves the proof of Assertion 2.
Combining Assertions 1 and 2 with Theorem 2.3 in [32] yields that R, ; = op(1).
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Now, it remains to study the term Ry ». To this aim, note that, for n large,

nh
Fz(un|x)fx(x)
VR [gERYD, ¥, X) — gl (v, Y, X)| < VAPGSI(b),

Rn 2| E|Ta(K,s.jIx) = To(K, 5, jix)|

IA

IA

since &, € & + r,B(0, b) where B(0,b) := {£ : ||&]ly < b} (where we use the Skorohod representation). According to
the proof of Assertion 1, since b, — 0 can be replaced by any fixed value b without changing the conclusion, we have
Rn,2 = 0(1)

Combining the results for R, ; and R, achieves the proof of Theorem 3.1.
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