期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:117
Strong consistency of k-parameters clustering
Article
Gallegos, Maria Teresa1  Ritter, Gunter1,2 
[1] Inst Data Anal, D-94121 Salzweg, Germany
[2] Univ Passau, Fac Informat & Math, D-94030 Passau, Germany
关键词: Cluster analysis;    Classification models;    Elliptical models;    Maximum likelihood estimation;    Strong consistency;   
DOI  :  10.1016/j.jmva.2013.01.013
来源: Elsevier
PDF
【 摘 要 】

Pollard showed for k-means clustering and a very broad class of sampling distributions that the optimal cluster means converge to the solution of the related population criterion as the size of the data set increases. We extend this consistency result to k-parameters clustering, a method derived from the heteroscedastic, elliptical classification model. It allows a more sensitive data analysis and has the advantage of being affine equivariant. Moreover, the present theory yields a consistent criterion for selecting the number of clusters in such models. (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2013_01_013.pdf 501KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次