期刊论文详细信息
JOURNAL OF PURE AND APPLIED ALGEBRA 卷:224
Permutation modules for cellularly stratified algebras
Article
Paul, Inga1 
[1] Univ Stuttgart, Inst Algebra & Zahlentheorie, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
关键词: Cellular algebras;    Permutation modules;    Young modules;    Partition algebras;   
DOI  :  10.1016/j.jpaa.2020.106412
来源: Elsevier
PDF
【 摘 要 】

Permutation modules play an important role in the representation theory of the symmetric group. Hartmann and Paget defined permutation modules for Brauer algebras. We generalise their construction to a wider class of algebras, namely cellularly stratified algebras, satisfying certain conditions. We give a decomposition into indecomposable summands, the Young modules, and show that permutation modules and Young modules admit cell filtrations (with well-defined filtration multiplicities). Partition algebras are shown to satisfy the given conditions, provided the characteristic of the underlying field is large enough. Thus we obtain a definition of permutation modules for partition algebras as an application. (C) 2020 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jpaa_2020_106412.pdf 629KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次