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Permutation modules play an important role in the representation theory of the 
symmetric group. Hartmann and Paget defined permutation modules for Brauer 
algebras. We generalise their construction to a wider class of algebras, namely 
cellularly stratified algebras, satisfying certain conditions. We give a decomposition 
into indecomposable summands, the Young modules, and show that permutation 
modules and Young modules admit cell filtrations (with well-defined filtration 
multiplicities). Partition algebras are shown to satisfy the given conditions, provided 
the characteristic of the underlying field is large enough. Thus we obtain a definition 
of permutation modules for partition algebras as an application.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The Specht modules Sλ are cornerstones of the representation theory of symmetric groups Σr. In char-
acteristic zero, they form a complete set of simple modules ([10, Theorem 3]). In arbitrary characteristic p, 
the simple modules occur as top quotients Sλ/Sλ ∩Sλ⊥ of Specht modules, in case λ is a p-regular partition 
of r ([10, Theorem 2]); for p-singular partitions λ, Sλ/Sλ ∩ Sλ⊥ is zero. In the more general case of cellular 
algebras, introduced by Graham and Lehrer [4] in 1996, the cell modules Θ(λ) adopt the role of Specht 
modules Sλ or their duals Sλ.

Another cornerstone in the representation theory of symmetric groups are the permutation modules 
Mλ = kΣr ⊗

kΣλ

k. By James’ Submodule Theorem ([10, Theorem 1]), Mλ has a unique direct summand 

Y λ, called Young module, containing Sλ as a submodule. Since Young modules are self-dual (cf. [3, 2.2.1 
(b)]), Y λ can also be characterised as the only direct summand of Mλ with quotient Sλ. Young modules 
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for different partitions are non-isomorphic ([12, Theorem 3.1 (iii)]). All direct summands of Mλ are Young 
modules Y μ, with μ ≤ λ and Y λ appears exactly once ([12, Theorem 3.1 (i)]).

Cellularly stratified algebras, introduced by Hartmann, Henke, König and Paget ([5]) in 2010, are cellu-
lar algebras with additional structure. The aim of this article is to generalise the well-known results about 
permutation modules for symmetric groups to cellularly stratified algebras containing group algebras of 
symmetric groups, or their Hecke algebras, as subalgebras. We will need to make some further structural 
assumptions (see Section 20) for the results to hold. Young modules for cellularly stratified algebras have 
already been used in [5]. They were defined abstractly via iterated universal extensions. While this defini-
tion is useful for theoretical considerations, the construction of iterated universal extensions might be hard 
in examples. Extending the construction of Young modules for Brauer algebras of Hartmann and Paget 
([8]), we present an explicit construction of Young modules (Theorem 1), which coincides, under additional 
assumptions stated in Section 20, with the abstract definition in [5] (Corollary 23). These assumptions are 
satisfied by Brauer algebras and partition algebras, thus we completely recover the results from [8] in a 
more general setting. This provides new proofs for some results of [5], e.g. a method of finding all indecom-
posable (relative) projective modules ([5, Proposition 12.3]) and Schur-Weyl duality ([5, Theorem 13.1]). 
The fact that two Young modules with different indices are non-isomorphic follows from the construction 
(Corollary 19).

The structural main result of this article is the decomposition of permutation modules M(l, λ) into Young 
modules Y (m, μ) (Theorem 4). In order to decompose permutation modules for symmetric groups, James 
used Schur algebras via Schur-Weyl duality and PIMs. There is a Schur-Weyl duality between cellularly 
stratified algebras and certain quasi-hereditary algebras, which can be regarded as Schur algebras associated 
to the cellularly stratified algebras, by [5, Theorem 13.1].

Our homological main result is to show that the Young modules Y (l, λ) admit filtrations by cell modules 
(Theorem 2) and are relative projective in the category F(Θ) of modules admitting cell filtrations (Theo-
rem 3). These statements hold provided the cellularly stratified algebra satisfies the additional assumptions 
stated in Section 20. This generalises a result from Hemmer and Nakano [7, Proposition 4.1.1] for Hecke 
algebras and enables us to prove the analogue of James’ theorem on the decomposition of permutation 
modules.

This article was inspired by the results of Hartmann and Paget [8] for Brauer algebras. We apply the 
theory developed here to Brauer algebras (Section 5.1) and recover their results (Theorem 5), thus providing 
new proofs.

Further applications to partition algebras (Section 5.2) show that, provided the characteristic of the field 
is large enough, we can construct permutation modules for partition algebras with the desired properties 
(Theorem 6). In order to have the homological Hemmer-Nakano-type results, we need filtrations of restric-
tions of cell modules to symmetric groups ([20, Theorem 1]) and filtrations of restrictions of permutation 
modules to symmetric groups. In Proposition 29 we show that the restriction of a permutation module to 
a group algebra of a symmetric group is isomorphic to a direct sum of permutation modules over this sym-
metric group. In the appendix, there is an example (B) and a GAP algorithm (C) to compute the occurring 
permutation modules.

The approach fails for BMW algebras, the third main example for cellularly stratified algebras in [5], 
since the appearing Hecke algebras are not subalgebras of BMW algebras. However, this is satisfied for 
q-Brauer algebras, another deformation of Brauer algebras, and there is hope that the theory applies in this 
case.

2. Preliminaries

In this article, we study a large class of abstract algebras. These are cellularly stratified algebras with 
certain extra conditions. The definition and some preliminary structural properties of cellularly stratified 
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algebras can be found in Subsection 2.2, the additional assumptions are, in full detail, stated in Section 4. 
Throughout this article, our main examples will be partition algebras Pk(r, δ) with δ ≠ 0, which we discuss 
in Subsections 2.1 and 2.3. Important steps in our arguments will be illustrated by small partition algebras.

2.1. Partition algebras

Partition algebras were independently defined by Jones [13] and Martin [16] to describe the Potts model 
in statistical mechanics. They are diagram algebras containing, as subalgebras, group algebras of symmetric 
groups and Brauer algebras. For further details on partition algebras, we advise the reader to see, for 
example, [23] or [9].

Definition 1. Let k be an algebraically closed field of arbitrary characteristic. Let r ∈ N and δ ∈ k. The 
partition algebra Pk(r, δ) is the algebra with basis given by all set partitions of {1, ..., r, 1′, ..., r′}. To each 
set partition, we associate an equivalence class of diagrams consisting of two rows of r dots each. Two 
dots a and b are connected via a path a − ... − b if and only if they belong to the same part of the set 
partition. Two diagrams are equivalent, if they correspond to the same set partition. Multiplication is given 
by concatenation of diagrams. Parts which are not connected to either top or bottom row (called inner 
circles) are replaced by a factor δ ∈ k.

Example (Equivalence of diagrams). The set partition {{1, 2′}, {2, 1′, 3′}, {3, 4′}, {4}} corresponds to the 

diagram 
● ● ● ●
● ● ● ●

with path 2 − 1′ − 3′ as well as to the diagram 
● ● ● ●
● ● ● ●

with path 

2 − 3′ − 1′, and the diagrams are equivalent to each other.

We choose to write all diagrams such that the paths are ordered decreasingly with respect to the order 
r > r − 1 > ... > 1 > 1′ > 2′ > ... > r′, like in the first diagram of the above example.

Example (Concatenation of diagrams). Consider the diagrams x =
● ● ● ●
● ● ● ●

and

y =
● ● ● ●
● ● ● ●

in Pk(4, δ). Their product is

xy =

● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●

= δ⋅
● ● ● ●
● ● ● ●

Note that multiplication of diagrams can decrease the number of propagating parts, i.e. parts connecting 
top and bottom row, but never increase the number of propagating parts.

2.2. Cellularly stratified algebras

Let k be an algebraically closed field, r a natural number and A an associative k-algebra. We denote the 
symmetric group on r letters by Σr; its Iwahori-Hecke algebra is denoted by Hk,q(Σr), for some unit q ∈ k. 

Let h be the smallest integer such that 
h−1
∑
i=0

qi = 0. If q = 1, then h = chark. If q is a primitive nthroot of 
unity, then h = n.



4 I. Paul / Journal of Pure and Applied Algebra 224 (2020) 106412
Definition 2 ([5], Definition 2.1). An algebra A is called cellularly stratified if the following holds.

(1) For each l = 0, ..., r there is a cellular algebra Bl and a vector space Vl such that A =
r

⊕
l=0

Bl ⊗k Vl ⊗k Vl

as a vector space, respecting within each layer the multiplication of A, i.e. A is an iterated inflation of 
the cellular algebras Bl along the vector spaces Vl as defined in [14].

(2) For all l = 0, ..., r there are elements ul, vl ∈ Vl ∖ {0} such that el ∶= 1Bl
⊗ ul ⊗ vl is an idempotent and 

elel′ = el = el′el for all l′ ≥ l.

The tuple (B0, V0, ..., Br, Vr) is called stratification data of A.

It follows from the first part of the definition that A is cellular with a chain of two-sided ideals

0 = J−1 ⊆ J0 ⊆ J1 ⊆ ... ⊆ Jr = A

such that Jl/Jl−1 = Bl ⊗k Vl ⊗k Vl as a non-unital algebra ([14, Proposition 3.1 and § 3.2]) which we call the 
lth layer of A, and Jl = AelA ([5, Lemma 2.2]). The product of x ∈ Jl ∖ Jl−1 and y ∈ Jl′ ∖ Jl′−1 lies in Jt, 
where t = min{l, l′} by [14, § 3.2]. The iterated inflation structure tells us that multiplication within a layer 
Bl ⊗k Vl ⊗k Vl is given by

(b⊗ x⊗ y)(b′ ⊗ x′ ⊗ y′) = (bϕ(y, x′)b′ ⊗ x⊗ y′) + lower terms

where lower terms refers to elements from layers with smaller index and ϕ is a bilinear form with ϕ(ul, vl) =
1 = ϕ(vl, ul) coming from the inflation data, cf [14, § 3.2] and [5, § 2.1].

There is an involution j on A, which is compatible with the involutions in of the input algebras Bn, via 
j(b ⊗ x ⊗ y) = in(b) ⊗ y ⊗ x for b ∈ Bn and x, y ∈ Vn, cf. [5, § 2.1].

A reader who is not familiar with cellularly stratified algebras might find it helpful to check the example 
of cellular stratification of partition algebras in Subsection 2.3 before reading the rest of this subsection.

We will make excessive use of the following lemma, whose proof will be sketched here for completeness.

Lemma 3 ([5], Lemma 2.3). If A is cellularly stratified, then

Bl ≃ elAel/elJl−1el

with 1Bl
mapped to el.

Proof. As an algebra, elAel/elJl−1el is isomorphic to (el + Jl−1)(Jl/Jl−1)(el + Jl−1). Using the fact that 
Jl/Jl−1 ≃ Bl⊗k Vl⊗k Vl and the multiplication in A, we get that the elements of (el+Jl−1)(Jl/Jl−1)(el+Jl−1)
are of the form

ϕ(vl, x)bϕ(y, ul) ⊗ ul ⊗ vl + Jl−1

with b ∈ Bl and x, y ∈ Vl. Choosing x = ul and y = vl, we obtain any element in Bl ⊗ ⟨ul⟩ ⊗ ⟨vl⟩ + Jl−1. Thus, 
the map Bl → (el + Jl−1)(Jl/Jl−1)(el + Jl−1) given by b ↦ b ⊗ ul ⊗ vl + Jl−1 is bijective. Multiplication in A
shows that this map is a homomorphism. ◻

Throughout this article, we assume that the input algebras Bl are isomorphic to subalgebras of elAel.

Corollary 4. The input algebra Bl is isomorphic to a subalgebra of elAel if and only if the multiplication 
map
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ml ∶(Bl ⊗k Vl ⊗k Vl) × (Bl ⊗k Vl ⊗k Vl) →elAel

(b⊗ x⊗ y, b′ ⊗ x′ ⊗ y′) ↦(bϕ(y, x′)b′ ⊗ x⊗ y′) + lower terms

restricted to (Bl ⊗ ⟨ul⟩ ⊗ ⟨vl⟩) × (Bl ⊗ ⟨ul⟩ ⊗ ⟨vl⟩) has no lower terms in its image. In this case,

bel = b = elb

for all b ∈ Bl.

Proof. By Lemma 3, we have an isomorphism Bl ≃ elAel/elJl−1el sending 1 to el + elJl−1el which factors 
through elAel:

Bl →elAel →elAel/elJl−1el
1 ↦ el ↦ el + elJl−1el

In particular, the map f ∶ Bl → elAel is injective. It is an embedding of algebras if and only if f(b)f(b′) =
f(bb′) for all b, b′ ∈ Bl, i.e. if and only if

(b⊗ ul ⊗ vl)(b′ ⊗ ul ⊗ vl) = bb′ ⊗ ul ⊗ vl

without any lower terms.
If Bl is isomorphic to a subalgebra of elAel, then b ∈ Bl can be regarded as an element b ⊗ ul ⊗ vl ∈ A, 

hence

bel = (b⊗ ul ⊗ vl)(1⊗ ul ⊗ vl) = bϕ(vl, ul) ⊗ ul ⊗ vl = b⊗ ul ⊗ vl = ϕ(vl, ul)b⊗ ul ⊗ vl = elb. ◻

Remark. If Bl is isomorphic to a subalgebra of elAel, then 1Bl
is mapped to el, the identity in elAel, so the 

composition

Bl ↪ elAel ↠ elAel/elJl−1el

is an isomorphism.

Proposition 5. Let A be cellularly stratified such that Bl is isomorphic to a subalgebra of elAel for some l < r. 
If Bn ⊆ Bn+1 for all n < l, and el is fixed by the involution j of A, then the algebra elAel is cellularly stratified. 
The stratification data is (B0, V l

0 , ..., Bl, V l
l ), where V l

n ⊆ Vn is a subspace such that en ∈ Bn⊗k V
l
n⊗k V

l
n, i.e. 

un, vn ∈ V l
n.

Proof. Let A =
r

⊕
n=0

Bn ⊗k Vn ⊗k Vn as a vector space. Then

elAel = el(
r

⊕
n=0

Bn ⊗k Vn ⊗k Vn)el

= el(
l

⊕
n=0

Bn ⊗k Vn ⊗k Vn)el

⊆ Bl ⊕ (
l−1
⊕
n=0

Bn ⊗k Vn ⊗k Vn)

where the inclusion holds up to the isomorphism Bl ≃ Bl ⊗k ⟨ul⟩k ⊗k ⟨vl⟩k. Assumption 3.4 in [14] shows 
that
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(b⊗ x⊗ y)(1Bl
⊗ ul ⊗ vl) ∈ Bn ⊗ x⊗ Vn ⊕ lower layers

and

(1Bl
⊗ ul ⊗ vl)(b⊗ x⊗ y) ∈ Bn ⊗ Vn ⊗ y ⊕ lower layers

for all b ∈ Bn, x, y ∈ Vn. In particular, right multiplication with el fixes the first Vn and left multiplication 
with el fixes the second Vn. Let V l,1

n be the smallest subspace of Vn such that

(I) (1Bl
⊗ ul ⊗ vl)(b ⊗ x ⊗ y) ∈ Bn ⊗ V l,1

n ⊗ y ⊕ lower layers

and let V l,2
n be the smallest subspace of Vn such that

(II) (b ⊗ x ⊗ y)(1Bl
⊗ ul ⊗ vl) ∈ Bn ⊗ x ⊗ V l,2

n ⊕ lower layers

for all b ∈ Bn, x, y ∈ Vn. Then

(1⊗ ul ⊗ vl)(b⊗ x⊗ y)(1⊗ ul ⊗ vl)
(II)≡ (b′ ⊗w1 ⊗ y)(1⊗ ul ⊗ vl)

with w1 ∈ V l,1
n , b′ ∈ Bn

(I)≡ b′′ ⊗w1 ⊗w2

with w2 ∈ V l,2
n , b′′ ∈ Bn

modulo lower layers. Then j((1 ⊗ul⊗vl)(b ⊗x ⊗y)(1 ⊗ul⊗vl)) ≡ j(b′′⊗w1⊗w2) = in(b′′) ⊗w2⊗w1 modulo 
lower layers. On the other hand,

j((1⊗ ul ⊗ vl)(b⊗ x⊗ y)(1⊗ ul ⊗ vl)) = j(1⊗ ul ⊗ vl)j(b⊗ x⊗ y)j(1⊗ ul ⊗ vl)
= (1⊗ ul ⊗ vl)(in(b) ⊗ y ⊗ x)(1⊗ ul ⊗ vl)
= b̄⊗ z1 ⊗ z2 + lower terms

with z1 ∈ V l,1
n and z2 ∈ V l,2

n . It follows that V l,1
n = V l,2

n =∶ V l
n.

It follows that elAel =
l

⊕
n=0

Bl
n ⊗k V l

n ⊗k V l
n for some Bl

n ⊆ Bn and V l
n ⊆ Vn. Using Bl

n ⊆ Bn ⊆ Bl, we 

get bel = elb for b ∈ Bn by Corollary 4. For any b ∈ Bn we have b ⊗ un ⊗ vn = ben = belenel = elbenel =
el(b ⊗ un ⊗ vn)el ∈ el(Bn ⊗ Vn ⊗ Vn)el = Bl

n ⊗k V
l
n ⊗k V

l
n. Hence Bl

n = Bn. ◻

Remark. The assumption that j(el) = el is necessary to show V l,1
n = V l,2

n . However, if j(el) ≠ el, there might 
be an isomorphism between V l,1

n and V l,2
n making elAel a cellularly stratified algebra, e.g. for the Brauer 

algebra A = Bk(5, 0), we have

e3 =
● ● ● ● ●
● ● ● ● ●

= 1⊗ top(e3) ⊗ bottom(e3)

= 1⊗ ● ● ● ● ● ⊗ ● ● ● ● ● .

For n = 1, the vector spaces V l,1
n and V l,2

n have basis partial diagrams with two arcs, such that each v ∈ V l,1
n

contains the arc in top(e3) and each v ∈ V l,2
n contains the arc in bottom(e3). Thus the two vector spaces 

have trivial intersection. However, there is an isomorphism V l,2
n

∼�→ V l,1
n , v ↦ v(3 5).
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Proposition 6. Let A be cellularly stratified such that Bl is isomorphic to a subalgebra of elAel for some 
0 ≤ l ≤ r. Furthermore, assume that Bn ⊆ Bn+1 for all 0 ≤ n < l and el is fixed by the involution j of A. Then 
elAel has the following (Bl, Bl)-bimodule decomposition:

elAel ≃ Bl ⊕ elJl−1el.

Proof. By Proposition 5, elAel is cellularly stratified and elAel =
l

⊕
n=0

Bn ⊗k V l
n ⊗k V l

n as vector space. On 

the other hand, the top layer of elAel is isomorphic to Bl by Lemma 3. Hence we have a vector space 
decomposition elAel ≃ Bl ⊕ elJl−1el. The composition of algebra homomorphisms

elAel ↠ elAel/elJl−1el ≃ Bl ↪ elAel

el ↦ el + elJl1el ↦ 1 ↦ el

respects the (Bl, Bl)-bimodule structure in every step,

elAel ↠ Bl ↪ elAel

belb
′ = bb′ ⊗ ul ⊗ vl ↦ bb′ ↦ bb′ ⊗ ul ⊗ vl = belb

′

so Bl is a direct summand of elAel as (Bl, Bl)-bimodule and the claim follows. ◻

2.3. Cellular stratification of partition algebras

Proposition 7 ([5], Proposition 2.6). If δ ≠ 0, the partition algebra is cellularly stratified with stratification 
data

(k,V0, k, V1, kΣ2, V2, ..., kΣr, Vr).

The idempotents are given by

e0 ∶=
1
δ
⋅
●1 ● ... ● ●r

●1′ ● ... ● ●r′
, en ∶=

●1 ... ● ●n ... ●r

●1′ ... ● ●n′ ... ●r′
for n ≥ 1.

In order to define the vector spaces Vl from the stratification data, we need further notation and defini-
tions.

A diagram consisting of only one row with r dots and arbitrary connections is called partial diagram. 
We have to distinguish certain parts from others; we say they are labelled and write the dots as empty 
circles ○ instead of dots ●. When we complete a partial diagram to a full diagram with two rows of dots, 
the labelled parts become propagating, i.e. they are connected to the other row. We count the parts from 
left to right, according to the leftmost dot of each part. We define Vn to be the vector space with basis 
all partial diagrams with exactly n labelled parts (and possibly further unlabelled parts). For example, 
● ○ ● ● ○ ○ ● is a basis element of V2, with r = 7; the labelled singleton ○ is the first 

labelled part, the part ○ − ○ is the second. Writing the idempotents el in the form 1Bl
⊗ ul ⊗ vl, we get

ul = vl = ○ ... ○ ○ ○ ... ○ ,

the partial diagram with l−1 labelled singletons followed by one labelled part of size r− l+1. The two-sided 
ideal Jl = AelA is generated, as a vector space, by the diagrams with at most l propagating parts.
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We write top(d) to denote the top row of a diagram d ∈ Pk(r, δ) and bottom(d) for its bottom row. 
The permutation induced by the propagating parts is denoted by Π(d). It is well-defined by the convention 
to connect labelled top and bottom row parts via their respective leftmost dots. Thus a diagram d (with 
exactly l propagating parts) is uniquely determined by the tensor product

Π(d) ⊗ top(d) ⊗ bottom(d) ∈ kΣl ⊗k Vl ⊗k Vl

as predicted by the vector space decomposition A =
r

⊕
l=0

Bl ⊗ Vl ⊗ Vl.

Lemma 8. For each 0 ≤ l ≤ r, there is an algebra isomorphism Pk(l, δ) → elPk(r, δ)el.

Proof. This isomorphism is given by attaching r − l dots to the right of both top and bottom row of a 
diagram in Pl(l, δ) and connecting the new dots to the rightmost dots of top and bottom row respectively 
of the original diagram. This map sends each diagram in Pk(l, δ) (i.e. each basis element) to a diagram (i.e. 
a basis element) in elPk(r, δ)el and each diagram in elPk(r, δ)el is of this form. Both algebras use the same 
multiplication. ◻

The partition algebra Pk(r, δ) contains the Brauer algebra Bk(r, δ) and the group algebra kΣr of the 
symmetric group Σr as subalgebras. The Brauer algebra is the subalgebra with basis given by all diagrams 
where each dot is connected to exactly one other dot. We call such a connection (horizontal) arc if it connects 
two dots within the same row. A permutation σ ∈ Σr corresponds to the diagram connecting the ith dot of 
the top row to the σ(i)th dot of the bottom row.

Corollary 9. Each symmetric group algebra kΣl with 0 ≤ l ≤ r is isomorphic to a subalgebra of Pk(l, δ) ≃
elPk(r, δ)el.

2.4. Functors

Let A be cellularly stratified with stratification data (B0, V0, ..., Br, Vr) where the Bl are isomorphic to 
group algebras of symmetric groups or their Iwahori-Hecke algebras, such that for each l ∈ {0, ..., r} we have 
an embedding Bl ↪ elAel of algebras. This is satisfied for Brauer algebras and partition algebras, but not 
for BMW-algebras, the third main example of cellularly stratified algebras in [5]. However, it is satisfied for 
another deformation of Brauer algebras: the q-Brauer algebras defined by Wenzl in [22].

Furthermore, we assume that for each layer l, the idempotent el is fixed by the involution j of A. We 
choose as cell modules for the cellular algebras Bl the dual Specht modules Sλ.

Lemma 10. Let A be cellularly stratified.

(1) Any Bl-module has also an elAel-module structure.
(2) Assume additionally, that Bl is isomorphic to a subalgebra of elAel. Then any elAel-module has a 

Bl-module structure.

Proof. (1) By Lemma 3, Bl is isomorphic to a quotient algebra elAel/elJl−1el of elAel. The action of elAel
on M is defined via this quotient map.

(2) The action of elAel restricts to an action of Bl in this case. ◻

We need two types of induction and two types of restriction functors, which we define as follows. We 
attach small examples of these functors in the appendix.
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Definition 11. Let A be cellularly stratified such that for each 0 ≤ l ≤ r the input algebra Bl is isomorphic 
to a subalgebra of elAel. We define the functors

indl ∶ Bl −mod → A −mod Indl ∶ Bl −mod → A −mod

M ↦ Ael ⊗
elAel

M M ↦ Ael ⊗
Bl

M

resl ∶ A −mod → Bl −mod Resl ∶ A −mod → Bl −mod

N ↦ el(A/Jl−1) ⊗
A

N N ↦ elA⊗
A

N ≃ elN

where Jl denotes the two-sided ideal AelA and el(A/Jl−1) is a short notation for elA/elJl−1.

For each Bl-module X, we have X ≃ Bl ⊗
Bl

X ≃ Bl ⊗
elAel

X, where elAel acts on both X and Bl via 

the quotient map elAel ↠ el(A/Jl−1)el ≃ Bl. Thus, the layer induction indl corresponds to the functor 
Gl ∶= Ael ⊗

elAel

Bl ⊗
elAel

−, defined in [5]. Hence, we can apply [5, Lemma 3.4] to get an isomorphism

indlX ≃ (A/Jl−1)el ⊗
elAel

X

of A-modules. We will make extensive use of the isomorphisms

indlX ≃ GlX ≃ (A/Jl−1)el ⊗
elAel

X ≃ (A/Jl−1)el ⊗
Bl

X

without special mention.
Let N ∈ A − mod. We call the subquotient (Jn/Jn−1) ⊗

A

N of N the nth layer of N . Since indlM ≃
(A/Jl−1)el ⊗

elAel

M ≃ (Jl/Jl−1) ⊗
A

Ael ⊗
elAel

M = (J/Jl−1) ⊗
A

indlM , indlM lives in the lth layer of A. We call 
indl the layer induction functor.

The induction functor Indl sends a Bl-module M to an A-module with a usually non-zero action of Jl−1, 
i.e. IndlM lives in all layers n with n ≤ l.

While resl removes the lower layers (with n < l) of the A-module N , Resl keeps all layers of the module.

Proposition 12 ([5], Propositions 4.1–4.3; Corollary 7.4; Propositions 8.1 and 8.2). The functor indl has 
the following properties.

(1) It is exact.
(2) The set {indlSλ∣l = 0, ..., r; Sλ cell module of Bl} is a complete set of cell modules for A.
(3) HomBl

(X, Y ) ≃ HomA(indlX, indlY ) for all X, Y ∈ Bl −mod.
(4) ExtiA(M, N) ≃ ExtiA/Jl

(M, N) for all i > 0 and M, N ∈ A/Jl −mod.
(5) ExtjBl

(X, Y ) ≃ ExtjA(indlX, indlY ) for all j ≥ 0 and X, Y ∈ Bl −mod.

If l <m then

(6) HomA(indlX, indmY ) = 0 for all X ∈ Bl −mod, Y ∈ Bm −mod.
(7) ExtiA(indlX, indmY ) = 0 for all i ≥ 1 and X ∈ Bl −mod, Y ∈ Bm −mod.

The induction Indl is not exact in general and does not send cell modules to cell modules. However, 
we will give sufficient conditions for Indl to send cell filtered modules to cell filtered modules in Section 3. 
Theorem 3 will tell us that, under additional conditions, Indl sends relative projective modules to relative 
projective modules, cf. Definition 15.
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The following properties of the functors are straightforward calculations. The layer restriction resl is 
right-exact, but in general not exact. It is left adjoint to HomBl

(el(A/Jl−1), −) and left inverse to both 
indl and Indl. The restriction Resl is exact, since elA is projective as right A-module. It is left adjoint 
to HomBl

(elA, −) and right adjoint to Indl, i.e. we have a triple (Indl, Resl, HomBl
(elA, −)) of adjoint 

functors. Furthermore, Resl is left inverse to indl, but in general not to Indl; the layers added by Indl are 
not removed by Resl.

For example, if A is the Brauer algebra BC(3, δ) with δ ≠ 0 and l = 3, and X is the trivial CΣ3-module 
C, then e3J1e3 = J1 = Ae1A, which consists of all linear combinations of Brauer diagrams with exactly one 
horizontal arc per row. The left CΣ3-module Res3Ind3C contains Ae1A ⊗

CΣ3
C which has a basis

⎧⎪⎪⎨⎪⎪⎩
[
● ● ●
● ● ●

], [
● ● ●
● ● ●

], [
● ● ●
● ● ●

]
⎫⎪⎪⎬⎪⎪⎭
,

where the brackets denote residue classes containing all three bottom row configurations. In particular, 
Ae1A ⊗

CΣ3
C is non-zero and not isomorphic to X.

Proposition 13. If X is a cell module of A, then reslX is a cell module of Bl or zero.

Proof. Let X be a cell module of A. By Proposition 12, part (2), we have X ≃ indnSν for some 1 ≤ n ≤ r, 
where Sν is a dual Specht module in Bn −mod. So reslX ≃ reslindnSν ≃ el(A/Jl−1) ⊗

A

(A/Jn−1)en ⊗
enAen

Sν ≃
el(A/Jm)en ⊗

enAen

Sν , where m = max{l−1, n −1}. If n < l, then en ∈ Jm = Jl−1 and if n > l, then el ∈ Jm = Jn−1. 
So, in both cases we have reslX = 0. For n = l, we have reslindlSν ≃ el(A/Jl−1) ⊗

A

(A/Jl−1)el ⊗
elAel

Sν ≃
el(A/Jl−1)el ⊗

Bl

Sν ≃ Sν . Thus, the layer restriction of a cell module from the same layer is a cell module, 
while cell modules from other layers vanish under restriction. ◻

2.5. Further definitions and notation

Let Λr ∶= {(l, λ)∣0 ≤ l ≤ r, λ ⊢ l′}, where l′ is the index of the symmetric group related to Bl and λ ⊢ l′

means that λ is a partition of l′. We define an order ≺ on Λr by setting

(n, ν) ≺ (l, λ) ⇔ n ≥ l and if n = l then ν ≤ λ in the dominance order.

Let (l, λ) ∈ Λr and let Mλ be the corresponding permutation module in Bl −mod.

Definition 14. We call the A-module M(l, λ) ∶= IndlM
λ permutation module for A.

Let Θ ∶= {Θ(l, λ) ∶= indlSλ ∣ (l, λ) ∈ Λr} denote the set of cell modules. The category of A-modules with 
a cell filtration, i.e. modules M admitting a chain of submodules M = Mn ⊃ Mn−1 ⊃ ... ⊃ M1 ⊃ M0 = 0
such that the subquotients Mm/Mm−1 are isomorphic to cell modules, is denoted by F(Θ). The category 
of Bl-modules admitting a filtration by dual Specht modules is denoted by Fl(S).

Definition 15 ([5], Definition 11.2). Let M, M ′ ∈ F(Θ). We say that M is relative projective in F(Θ), if

Ext1A(M, N) = 0 for all N ∈ F(Θ).

A relative projective module M ∈ F(Θ) is the relative projective cover of M ′, if M is minimal with respect 
to the property that there is an epimorphism f ∶M ↠M ′ with ker f ∈ F(Θ).
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3. Young modules

In this section, we define Young modules as direct summands of permutation modules, following the 
definitions given for Brauer algebras by Hartmann and Paget, [8]. This allows us to extend the results of 
James for group algebras of symmetric groups to cellularly stratified algebras whose input algebras are 
isomorphic to group algebras of symmetric groups or their Hecke algebras.

Theorem 1. Fix l ≤ r and let A be a cellularly stratified algebra with input algebras Bn isomorphic to group 
algebras of symmetric groups or their Hecke algebras such that Bn ⊆ Bn+1 for all 0 ≤ n < l and each Bn

embeds into enAen as subalgebra. Assume further that el is fixed by the involution j of A which is compatible 
with the involutions of the Bn. Then IndlMλ has a unique direct summand with quotient isomorphic to 
indlY

λ.

Proof. It is well-known that the Bl-permutation module Mλ decomposes into a direct sum of indecompos-
able Young modules Y μ with multiplicities aμ, where aλ = 1 and aμ ≠ 0 implies μ ≥ λ ([12, Theorem 3.1]). 
Therefore, we have IndlMλ = ⊕

(l,μ)∈Λr

(IndlY μ)aμ . Decompose IndlY λ further into a direct sum of indecom-

posables (IndlY λ)εi, given by primitive idempotents εi ∈ EndA(IndlY λ) such that 
s

∑
i=1

εi = 1EndA(IndlY λ).

Claim 1. IndlY λ has a direct summand with quotient isomorphic to indlY λ.

Let πi ∶ IndlY λ ↠ (IndlY λ)εi be the canonical projection onto (IndlY λ)εi and ιi ∶ (IndlY λ)εi ↪ IndlY
λ

the canonical inclusion of (IndlY λ)εi. The functor Resl is exact, so applying it to the composition ιi ○ πi

gives maps

Resl(ιi ○ πi) ∶ elA⊗
A

Ael ⊗
Bl

Y λ
elA⊗πi

elA⊗
A

Yi

elA⊗ιi
elA⊗

A

Ael ⊗
Bl

Y λ .

By Proposition 6, we have a decomposition elAel ≃ Bl⊕ elJl−1el of (Bl, Bl)-bimodules. Thus the homomor-
phism Resl(ιi ○πi) is given by a matrix, where the top left entry is an endomorphism fi ∈ EndBl

(Y λ). This 
gives a commutative diagram

Ael ⊗
Bl

Y λ
πi

Resl

(Ael ⊗
Bl

Y λ)εi
ιi

Ael ⊗
Bl

Y λ

Resl

in A −mod

elAel ⊗
Bl

Y λ
Resl(ιi○πi)

≀

elAel ⊗
Bl

Y λ

≀

in Bl −mod

Y λ ⊕ (elJl−1el ⊗
Bl

Y λ)
(fi h′i
gi hi

)
Y λ ⊕ (elJl−1el ⊗

Bl

Y λ) in Bl −mod

where the isomorphisms from second to third row come from the decomposition elAel ≃ Bl ⊕ elJl−1el, see 
Proposition 6.

Let y ∈ Y λ. Then πi(el ⊗ y) = εi(el ⊗ y) ∈ Ael ⊗
Bl

Y λ. Since εi is an A-homomorphism, we have

εi(el ⊗ y) = εi(e2
l ⊗ y) = elεi(el ⊗ y) = el(

t

∑ ajel ⊗ xj) =
t

∑ elajel ⊗ xj

j=1 j=1
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for some t ∈N, aj ∈ A and xj ∈ Y λ. If elajel ∈ Jl ∖Jl−1 then elajel corresponds to an element bj ∈ Bl via the 
isomorphism

elAel ∖ elJl−1el �→ elAel/elJl−1el�→ Bl

elael ↦ elael + elJl−1el ↦ b

where the last map is the isomorphism from Lemma 3. In particular, elajel ⊗ x = elbj ⊗ x = el ⊗ bjx in this 
case. It follows that

πi(el ⊗ y) = εi(el ⊗ y) = el ⊗ x + lower terms

for some x ∈ Y λ. By lower terms we mean terms in elJl−1el ⊗
Bl

Y λ. It follows that

Resl(εi(el ⊗ y)) = el ⊗ x + lower terms.

On the other hand, el ⊗ y ∈ Resl(IndlY λ) is sent to (y, 0) under the isomorphism in Proposition 6, so 

Resl(εi(el⊗y)) is the preimage of (fi h′i
gi hi

)(y0) = fi(y) +gi(y) = fi(y) + lower terms under the isomorphism 

in Proposition 6, i.e.

Resl(εi(el ⊗ y)) = el ⊗ fi(y) + lower terms.

This shows that

πi(el ⊗ y) = el ⊗ fi(y) + lower terms.

The identity on IndlY λ is 
s

∑
i=1
(ιi ○ πi), so

el ⊗ y =
s

∑
i=1

ιi(πi(el ⊗ y)) =
s

∑
i=1
(el ⊗ fi(y)) + lower terms

for any y ∈ Y λ. Since there are no lower terms on the left hand side, they vanish on the right hand side and 
we have

el ⊗ y =
s

∑
i=1
(el ⊗ fi(y)) = el ⊗ (

s

∑
i=1

fi(y)) .

Hence there is a ξ ∈ Σλ such that ξ
s

∑
i=1

fi(y) = y, so 
s

∑
i=1
(ξfi) is the identity on Y λ.

Y λ is finite dimensional and indecomposable, so EndBl
(Y λ) is local. Therefore, at least one of the 

summands ξfi must be invertible. We now assume without loss of generality that ξf1 is invertible, thus f1
is invertible.

Let

ϕ ∶ IndlY λ �→ indlY
λ

el ⊗ y 3→(el + Jl−1el) ⊗ y

and ϕ′ ∶= ϕ ○ ι1 ○ π1 its restriction to (IndlY λ)ε1. Then

ϕ′(el ⊗ y) = ϕ(el ⊗ f1(y) + lower terms) = (el + Jl−1el) ⊗ f1(y).
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Surjectivity of f1 implies that the A-homomorphism ϕ′ is surjective, so indlY λ is a quotient of (IndlY λ)ε1.

Claim 2. (IndlY λ)ε1 is the only summand of IndlY λ with quotient isomorphic to indlY λ.

Suppose there is another summand (IndlY λ)ε2 of IndlY λ such that there is an epimorphism ψ ∶
IndlY

λ ↠ indlY
λ with

ψ((IndlY λ)ε2) = indlY
λ

and ψ((IndlY λ)εj) = 0 for all j ≠ 2.

By tensor-hom adjunction, ψ is an element in

HomA(IndlY λ, indlY
λ) ≃ HomBl

(Y λ,HomA(Ael,Ael ⊗
elAel

Y λ))

≃ HomBl
(Y λ, elAel ⊗

elAel

Y λ) ≃ EndBl
(Y λ),

so ψ is given by

ψ(el ⊗ y) = (el + Jl−1el) ⊗ g(y)

for some g ∈ EndBl
(Y λ). Let y ∈ Y λ, y ≠ 0. The surjectivity of ψ provides the existence of a preimage 

v =
t

∑
i=1
(aiel ⊗ yi) ∈ (IndlY λ)ε2 of (el + Jl−1el) ⊗ y ∈ indlY λ with ai ∈ A and yi ∈ Y λ for all i ∈ {1, ..., t} and 

some t ∈ N. Since elAel decomposes into Bl ⊕ elJl−1el as (Bl, Bl)-bimodule by Proposition 6, we can write 
any element elael ∈ elAel as b + eljel with b ∈ Bl and j ∈ Jl−1. Thus

elv = el(
t

∑
i=1

aiel ⊗ yi) =
t

∑
i=1

elaiel ⊗ yi = el ⊗w + lower terms

for some w ∈ Y λ. Application of ψ yields

ψ(elv) = ψ(el ⊗w + lower terms ) = (el + Jl−1el) ⊗ g(w).

On the other hand,

ψ(elv) = elψ(v) = el((el + Jl−1el) ⊗ y) = (el + Jl−1el) ⊗ y,

so g(w) = 0 would imply y = 0, which we excluded. Hence w ≠ 0. But elv ∈ (IndlY λ)ε2 and

ϕ′(elv) = ϕ′(el ⊗w + lower terms) = (el + Jl−1el) ⊗ f1(w) ≠ 0

since w ≠ 0 and f1 is a unit, in particular injective. So ϕ′((IndlY λ)ε2) ≠ 0, which contradicts the definition 
of ϕ′.

Claim 3. There is no summand of IndlY μ with quotient indlY λ for μ ≠ λ.

Assume there is a direct summand Y μ of Mλ with μ > λ such that indlY λ is a quotient of IndlY μ. 
An arbitrary homomorphism Φ ∶ IndlY μ → indlY

λ is given by Φ(el ⊗ y) = (el + Jl−1el) ⊗ ϕ(y) for some 
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ϕ ∈ HomBl
(Y μ, Y λ) by the adjunction HomA(IndlY μ, indlY λ) ≃ HomBl

(Y μ, Y λ). Φ is surjective only if ϕ
is surjective.1

The rest of the proof can be copied from [8] in case Bl = kΣl′ . We give here a similar proof for Iwahori-
Hecke algebras H ∶= Hk,q(Σl), inspired by the one for group algebras of symmetric groups, using notation 
from [1].

Suppose there is an epimorphism ϕ ∶ Y μ ↠ Y λ, which we extend to an epimorphism ϕ̂ ∶Mμ → Y λ such 
that ϕ̂ is zero on all summands other than Y μ, i.e. ϕ̂ is the projection from Mμ onto the direct summand 
Y μ, followed by the map ϕ. Recall (e.g. from [1]) that H is generated by elements Tπ, π ∈ Σl, and Mμ = Hxμ, 
where xμ = ∑

ω∈Σμ

Tω. For yλ′ = ∑
ω∈Σλ′

(−q)l(ω)Tω, where l is the length function on symmetric group elements 

and λ′ is the conjugate of the partition λ, we have that yλ′Tπxμ ≠ 0 implies λ = λ′′ ≥ μ by [1, Lemma 4.1]. 
So for μ > λ, we have yλ′Mμ = 0. Then 0 = ϕ̂(0) = ϕ̂(yλ′Mμ) = yλ′ ϕ̂(Mμ) = yλ′Y

λ. But yλ′Y λ contains the 
generator yλ′Twλ

xλ = zλ of Sλ, in particular yλ′Y λ ≠ 0.
This concludes the proof of Theorem 1. ◻

Definition 16. We denote the unique summand of IndlY λ with quotient indlY λ constructed above by Y (l, λ), 
in analogy to [8], and call it Young module for A with respect to (l, λ) ∈ Λr.

Example. Let A = Pk(2, δ) with δ ≠ 0 and chark ≠ 2, 3. Let λ = (1, 1) = (12). Then Y (1
2) = ksgn is the 

sign-module for kΣ2 and

Ind2Y
(12) = A ⊗

kΣ2
ksgn =k ⟨

● ●
● ●

⊗ 1,
● ●
● ●

⊗ 1,
● ●
● ●

⊗ 1, e2 ⊗ 1⟩ .

The idempotents ε1 ∶ e2 ⊗ 1 ↦
⎛
⎝
e2 − 1

δ

● ●
● ●

⎞
⎠
⊗ 1 and ε2 ∶ e2 ⊗ 1 ↦ 1

δ

● ●
● ●

⊗ 1 give the following 

decomposition into indecomposables:

(Ind2Y
(12))ε1 =k ⟨

⎛
⎝
e2 −

1
δ

● ●
● ●

⎞
⎠
⊗ 1⟩

(Ind2Y
(12))ε2 =k ⟨

● ●
● ●

⊗ 1,
● ●
● ●

⊗ 1,
● ●
● ●

⊗ 1⟩ = J1 ⊗
kΣ2

ksgn

The summand (Ind2Y
(12))ε2 lies in the kernel of any map

Ind2Y
(12) → ind2Y

(12) = A/J1 ⊗
kΣ2

ksgn

so the only candidate for Y (2, (12)) is (Ind2Y
(12))ε1. Since ker(π1) = J1 ⊗

kΣ2
ksgn, the second column of 

the matrix in the commutative diagram in Claim 1 is zero. For the generator e2 ⊗ 1 we have π1(e2 ⊗

1) =
⎛
⎝
e2 − 1

δ

● ●
● ●

⎞
⎠
⊗ 1 and Res2(e2 ⊗ 1) corresponds to (1, 0) under the vertical isomorphism in the 

commutative diagram. This shows that the matrix is (1 0
g 0) with g(1) = −1

δ

● ●
● ●

⊗ 1. The epimorphism 

ϕ′ ∶ Ind2Y
(12) → Y (2, (12)) → ind2Y

(12) is given by

1 Assume there is w ∈ Y λ such that ϕ(y) ≠ w for all y ∈ Y μ. Let ∑(aiel ⊗ yi) be an arbitrary element of IndlY
μ and suppose 

that Φ(∑(aiel ⊗ yi)) = ∑(aiel ⊗ϕ(yi)) = el ⊗w. Then for each i we have aiel = elbi for some bi ∈ Bl and thus ∑(aiel ⊗ϕ(yi))el =
∑(el ⊗ biϕ(yi)) = el ⊗ϕ(∑ biyi)) = el ⊗w⇒ ϕ(∑ biyi) = w ☇.
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ϕ′(e2 ⊗ 1) = ϕ
⎛
⎝
⎛
⎝
e2 −

1
δ

● ●
● ●

⎞
⎠
⊗ 1

⎞
⎠

=
⎛
⎝
⎛
⎝
e2 −

1
δ

● ●
● ●

⎞
⎠
+ J1

⎞
⎠
⊗ 1

= (e2 + J1) ⊗ 1.

There cannot be any surjective A-homomorphism Ind2Y
(2) ↠ ind2Y

(12) since any such ψ would send 
the generator e2 ⊗ 1 to a scalar s ∈ k and

ψ((12)e2 ⊗ 1) = (12)ψ(e2 ⊗ 1) = (12)s = −s,

but on the other hand,

(12)e2 ⊗ 1 = e2(12) ⊗ 1 = e2 ⊗ 1

holds in Ind2Y
(2) so ψ((1 2)e2 ⊗ 1) = s. Thus HomA(Ind2Y

(2), ind2Y
(12)) = 0.

We now collect conditions for a Young module Y (m, μ) to appear as a summand of M(l, λ). They 
generalise the conditions from [8, Lemmas 17 and 18] for A = Bk(r, δ). The fact that these are the only 
direct summands of permutation modules is our main result (Theorem 4) and will be proven using results 
from the next Section.

Lemma 17. If (l, λ), (m, μ) ∈ Λr with l <m, then Y (m, μ) does not appear as a summand of M(l, λ).

Proof. Indl is left adjoint to Resl, so

HomA(IndlMλ, indmY μ) ≃ HomBl
(Mλ,ReslindmY μ)

≃ HomBl
(Mλ, el(A/Jm−1)em ⊗

emAem

Y μ).

For l <m, el ∈ Jm−1, so ReslindmY μ = 0. Thus, there cannot be a non-zero map

IndlM
λ → Y (m,μ)

since it would extend to a non-zero map IndlMλ → indmY μ. ◻

Lemma 18. If (l, λ), (l, κ) ∈ Λr, then Y (l, λ) occurs as a direct summand of M(l, κ) if and only if Y λ is a 
direct summand of Mκ. This can only occur if λ ≥ κ.

Proof. If Y λ is a direct summand of Mκ, then Y (l, λ), as a direct summand of IndlY λ, is a direct summand 
of IndlMκ =M(l, κ).

If Y (l, λ) is a direct summand of M(l, κ) and Mκ = ⊕(Y μ)aμ , then Y (l, λ) is a summand of IndlY μ for 
some μ.

It follows from Theorem 1, Claim 3, that μ = λ, so Y λ is a direct summand of Mκ. ◻

Corollary 19. If (l, λ) ≠ (l, κ), then Y (l, λ) ≄ Y (l, κ).

Proof. Let (l, λ) ≠ (l, κ). Then Y λ /≃ Y κ, see for example [15, Section 7.6], so IndlY λ ≄ IndlY
κ since 

otherwise reslIndlY λ ≃ Y λ would be isomorphic to reslIndlY κ ≃ Y κ. Assume that Y (l, λ) ≃ Y (l, κ). Then 
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Y (l, κ) is a direct summand of M(l, λ) and by Lemma 18, Y κ is a direct summand of Mλ. So IndlY κ is a 
summand of M(l, λ) and has a summand Y (l, κ) with quotient indlY κ. But Y (l, κ) is isomorphic to Y (l, λ)
with quotient indlY λ, so IndlY κ has a direct summand with quotient isomorphic to indlY λ and κ ≠ λ. This 
contradicts Claim 3 from Theorem 1. ◻

4. Properties

Each Young module Y (l, λ) is a direct summand of the permutation module M(l, λ) = IndlM
λ by 

definition. In this section, we show that the indecomposable direct summands of permutation modules are 
exactly the Young modules, as in the symmetric group case, provided A satisfies the additional assumptions 
defined below. The results extend the results on Brauer algebras stated in [8] to our setup.

We give conditions under which the permutation modules for our cellularly stratified algebra A admit a 
cell filtration in Subsection 4.1. In Subsection 4.2, we show that permutation modules are relative projective 
in the subcategory F(Θ) of cell filtered A-modules, provided a further condition is satisfied. Then the 
Young module Y (l, λ) is the relative projective cover of the cell module Θ(l, λ) ∶= indlSλ (Theorem 3). As 
a corollary of this, we recover a result about Schur-Weyl duality from [5] in Subsection 4.3. Finally, we 
can prove Theorem 4, the decomposition of the permutation module M(l, λ) into a direct sum of Young 
modules Y (l, λ), in Subsection 4.4.

A crucial point in the study of a category F(Δ) of Δ-filtered A-modules is that it is closed under direct 
summands if the set Δ with ordered index set (I, ≤) forms a standard system,2 i.e. for all l, m ∈ I

◆ A crucial point in the study of] EndA(Δ(l)) is a division ring.
◆ HomA(Δ(l), Δ(m)) ≠ 0 implies l ≥m.
◆ Ext1A(Δ(l), Δ(m)) ≠ 0 implies l >m.

The statement follows from [21, Theorem 2].

Lemma 20. Let A be cellularly stratified with stratification data (B0, V0, ..., Br, Vr) where the Bl are isomor-
phic to group algebras of symmetric groups or their Iwahori-Hecke algebras. Let chark = p ∈ Z≥0∖{2, 3} if the 
input algebras are group algebras of symmetric groups and let h ≥ 4 if the input algebras Bl are isomorphic 
to Hecke algebras Hk,q(Σl). Then the cell modules Θ of A form a standard system with respect to the order 
≺ defined in Subsection 2.5.

Proof. Dual Specht modules for symmetric groups form a standard system by [7, Proposition 4.2.1] and 
[11, Corollary 13.17]. Dual Specht modules for Iwahori-Hecke algebras of symmetric groups form a standard 
system by [7, Proposition 4.2.1] and [17, Exercise 4.11]. The statement follows from [5, Theorem 10.2 (a)]. ◻

Assumptions. We give names to the following assumptions that we make on A in order to prove the desired 
properties for permutation modules and Young modules. Furthermore, we often assume that chark ∈ Z≥0 ∖
{2, 3} (or h ≥ 4, in case the Bl are Iwahori-Hecke algebras) to be able to use Lemma 20.

Let A be cellularly stratified with stratification data (B0, V0, ..., Br, Vr) where the Bl are isomorphic to 
group algebras of symmetric groups or their Iwahori-Hecke algebras, such that for each l ∈ {0, ..., r} we have 
an embedding Bl ↪ elAel of algebras. Let n, l with 1 ≤ n ≤ l ≤ r be arbitrary.

(I) Jnel ≃ Jn−1el ⊕ (Jn/Jn−1)el as right Bl-modules.
(II) (Jn/Jn−1)el ≃ (A/Jn−1)en ⊗

enAen

en(A/Jn−1)el as right Bl-modules.

2 cf. [2, Section 3] or [5, Definition 10.1].
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(III) Layer-removing restriction to Bn −mod of a permutation module from layer l is dual Specht filtered:

resnIndlM
λ ∈ Fn(S)

(IV) Classical restriction to Bl −mod of a cell module from layer n is dual Specht filtered:

ReslindnSν ∈ Fl(S)

Remark. Assumption (IV) implies that for any X ∈ Fn(S), ReslindnX ∈ Fl(S): The functor indn is exact 
and sends dual Specht modules to cell modules, so indnX has a cell filtration. Resl is exact, so ReslindnX

has a filtration by modules of the form ReslindnSν ∈ Fl(S). The statement follows since Fl(S) is extension-
closed.

Lemma 21. Instead of (II), we can assume
(II’) (Jn/Jn−1)el ≃ Bn ⊗k Vn ⊗k V

l
n as vector spaces.

Proof. By Proposition 5, the algebra elAel is cellularly stratified with idempotents en = 1Bn
⊗ un ⊗ vn ∈

Bn ⊗k V
l
n ⊗k V

l
n ⊆ Bn ⊗k Vn ⊗k Vn. Then en(A/Jn−1)el = en(elAel/elJn−1el) is free of rank dimV l

n over Bn

by [5, Proposition 3.5] and indn(en(A/Jn−1)el) ≃ (A/Jn−1)en ⊗
Bn

en(A/Jn−1)el ≃
dimV l

n

⊕
i=1

(A/Jn−1)en as left 

A-modules. Hence, dim(indn(en(A/Jn−1)el)) = dim((A/Jn−1)en) ⋅ dimV l
n = dimBn ⋅ dimVn ⋅ dimV l

n, since 
(A/Jn−1)en is free of rank dimVn over Bn.

The multiplication map

(A/Jn−1)en ⊗
Bn

en(A/Jn−1)el �→ (Jn/Jn−1)el

(a + Jn−1)en ⊗ en(b + Jn−1)el 3→ (aenb + Jn−1)el

is an epimorphism of (A, Bl)-bimodules and dim(indn(en(A/Jn−1)el)) = dimV l
n ⋅ dimVn ⋅ dimBn =

dim((Jn/Jn−1)el) by (II’), so (II) is satisfied. ◻

4.1. Cell filtrations

Theorem 2. Let A be cellularly stratified, such that the input algebras Bl are isomorphic to group algebras 
of symmetric groups or their Hecke algebras and Bn ⊆ Bn+1 for all 0 ≤ n < l. Assume that the idempotent 
el is fixed by the involution j of A which is compatible with the involutions of the Bn and that A satisfies 
(I),(II) and (III). Then the permutation module M(l, λ) has a filtration by cell modules.
If, in addition, chark ∈ Z≥0 ∖ {2, 3} or h ≥ 4, then the direct summands of IndlMλ have cell filtrations.

Proof. A = Jr ⊃ Jr−1 ⊃ ... ⊃ J1 ⊃ J0 = 0 is a filtration of A (with quotients isomorphic to Bn ⊗k Vn ⊗k Vn), so 
we have short exact sequences

0 → Jn−1 → Jn → Jn/Jn−1 → 0

of (A, A)-bimodules for 1 ≤ n ≤ r. Application of the exact restriction functor − ⊗
A

Ael gives exact sequences

0 → Jn−1el → Jnel → (Jn/Jn−1)el → 0
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of (A, elAel)-bimodules for n ≤ l, which are split exact as sequences of right Bl-modules by assumption (I). 
Hence, we get exact sequences

0 → Jn−1el ⊗
Bl

Mλ → Jnel ⊗
Bl

Mλ → (Jn/Jn−1)el ⊗
Bl

Mλ → 0

of left A-modules, which give rise to a filtration

Ael ⊗
Bl

Mλ ⊃ Jl−1el ⊗
Bl

Mλ ⊃ ... ⊃ J1el ⊗
Bl

Mλ ⊃ 0

of M(l, λ) = IndlM
λ with quotients Mn(l, λ) ∶= (Jn/Jn−1)el ⊗

Bl

Mλ, the nth layer of M(l, λ). Assumption 

(II) gives

Mn(l, λ) ≃ indn(en(A/Jn−1)el) ⊗
Bl

Mλ

≃ indn(en(A/Jn−1)el ⊗
Bl

Mλ)

≃ indn(resnIndlMλ).

By assumption (III), resnIndlMλ ∈ Fn(S). The functor indn is exact and sends dual Specht modules to 
cell modules by Proposition 12, so Mn(l, λ) ∈ F(Θ) for all 1 ≤ n ≤ l, in particular M(l, λ) =M l(l, λ) ∈ F(Θ).

If chark is different from 2 and 3, then the cell modules of A form a standard system by Lemma 20. In 
this case, F(Θ) is closed under direct summands by [21, Theorem 2], so all direct summands of IndlMλ, 
in particular the Young modules Y (l, λ), admit cell filtrations. ◻

4.2. Relative projectivity

An important property of the permutation modules Mλ ∈ Bl −mod is their relative projectivity in the 
category Fl(S), as shown by Hemmer and Nakano in [7, Proposition 4.1.1], in case h ≥ 4. This property 
is translated to the permutation modules M(l, λ) of A, in case the conditions (I) to (IV) are satisfied. 
Furthermore, the Young modules are relative projective covers of the cell modules.

Theorem 3. Let A be cellularly stratified, such that the input algebras Bl are isomorphic to group algebras of 
symmetric groups or their Hecke algebras and Bn ⊆ Bn+1 for all 0 ≤ n < l. Assume that the idempotent el is 
fixed by the involution j of A which is compatible with the involutions of the Bn and that A satisfies (I) to 
(IV). Then the permutation module IndlMλ is relative projective in F(Θ). If, in addition, chark ∈ Z≥0∖{2, 3}
(or h ≥ 4), then all direct summands of IndlMλ are relative projective in F(Θ). Furthermore, Y (l, λ) is the 
relative projective cover of Θ(l, λ) in the category F(Θ) of cell filtered modules.

Proof. By Theorem 2, M(l, λ) and all its direct summands (provided chark ≠ 2, 3 or h ≥ 4) are in F(Θ) if A
satisfies conditions (I) to (III). We have to show that Ext1A(M(l, λ), X) = 0 for all X ∈ F(X). Let X ∈ F(Θ)
and let

(∗) ∶ 0 →X → Y → IndlM
λ → 0

be a short exact sequence in Ext1A(M(l, λ), X).
Apply the exact functor Resl on (∗) to get a short exact sequence

(∗∗) ∶ 0 → elX → elY → elAel ⊗Mλ → 0

Bl
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in Bl −mod. Now we apply the left exact functor HomBl
(Mλ, −) to get a long exact sequence

0 HomBl
(Mλ, elX) HomBl

(Mλ, elY ) HomBl
(Mλ, elAel ⊗

Bl

Mλ)

Ext1Bl
(Mλ, elX) ...

It follows from assumption (IV) and the exactness of Resl that elX ∈ Fl(S) for X ∈ F(Θ). Since Mλ is 
relative projective in Fl(S), we get Ext1Bl

(Mλ, elX) = 0, in particular we get a short exact sequence

0 → HomBl
(Mλ, elX) → HomBl

(Mλ, elY ) → HomBl
(Mλ, elAel ⊗

Bl

Mλ) → 0

which is isomorphic to the short exact sequence

(◇) ∶ 0 → HomA(IndlMλ,X) → HomA(IndlMλ, Y ) f→ EndA(IndlMλ) → 0

since Resl is right adjoint to Indl.
Consider

(∗) ∶ 0 X Y
α

IndlM
λ 0

IndlM
λ

∃β

then β exists (such that the diagram commutes) by surjectivity of the map f in (◇). This shows that (∗)
splits and so Ext1A(M(l, λ), X) = 0. In particular, M(l, λ) is relative projective in F(Θ).

Now let Z be a direct summand of M(l, λ) with π ∶ IndlMλ → Z the projection onto Z and ι ∶ Z → IndlM
λ

the inclusion of Z into M(l, λ). With the same strategy as above, applied to the short exact sequence

(⋆) ∶ 0 →X → Y → Z → 0,

we see that the map HomA(IndlMλ, Y ) → HomA(IndlMλ, Z) is surjective, which provides the existence of 
a map f ∶ IndlMλ → Y such that π = gf :

0 X Y
g

Z

ι

0

IndlM
λ

∃f
π

But πι = idZ , so gfι = idZ and fι is right inverse to g. Therefore, the sequence (⋆) splits and Ext1A(Z, X) = 0, 
so all direct summands of IndlMλ are relative projective in F(Θ).
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In order to prove that Y (l, λ) is the relative projective cover of Θ(l, λ), we have to show that there is an 
epimorphism

Ψ ∶ Y (l, λ) ↠ Θ(l, λ)

with ker(Ψ) ∈ F(Θ) and that Y (l, λ) is minimal with respect to this property. Once we have established 
an epimorphism whose kernel is in F(Θ), the minimality condition is immediately satisfied since Y (l, λ) is 
indecomposable, and then Y (l, λ) is a relative projective cover of Θ(l, λ).

The Bl-module Y λ has a dual Specht filtration with top quotient Sλ, so the kernel of the map Y λ ↠ Sλ

lies in Fl(S). The functor indl is exact and sends dual Specht modules to cell modules, so the kernel of the 
epimorphism

ψ ∶ indlY λ ↠ indlSλ = Θ(l, λ)

has a cell filtration.
Recall from the proof of Theorem 1 that there is an epimorphism

φ ∶ Y (l, λ) ι↪ IndlY
λ ϕ→ indlY

λ.

Consider the commutative diagram

0

kerφ

0 kerΨ Y (l, λ)
Ψ=φψ

φ

Θ(l, λ) 0

0 kerψ indlY
λ

ψ
Θ(l, λ) 0

0

with kerψ, Y (l, λ), indlY λ and Θ(l, λ) in F(Θ). The composition

kerΨ → Y (l, λ) φ→ indlY
λ ψ→ Θ(l, λ)

is zero, so the universal property of the kernel of ψ provides a unique morphism kerΨ → kerψ, with kernel 
K, making the diagram
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0 0

K
∼ kerφ

0 kerΨ Y (l, λ) Ψ

φ

Θ(l, λ) 0

0 kerψ indlY
λ

ψ
Θ(l, λ) 0

0 0

commutative. The map K → kerφ is given by the universal property of the kernel of φ and is an isomorphism 
by the snake lemma. The snake lemma also asserts surjectivity of the map kerΨ → kerψ.

Thus, we have a short exact sequence

0 → kerφ→ kerΨ → kerψ → 0

with kerψ ∈ F(Θ). If we can show that kerφ = kerϕι ∈ F(Θ), then kerΨ ∈ F(Θ) since F(Θ) is extension-
closed.

Consider the commutative diagram

0 kerϕι Y (l, λ)
ϕι

ι

indlY
λ 0

0 kerϕ IndlY
λ

ϕ
indlY

λ 0

We have ι(kerϕι) ⊆ kerϕ, so ι restricts to kerϕι → kerϕ.
Now, we consider the commutative diagram

0 kerϕι Y (l, λ)
ϕι

indlY
λ 0

0 kerϕ IndlY
λ

ϕ

π

indlY
λ 0

where π is the projection from IndlY λ onto its summand Y (l, λ). We see that π(kerϕ) ⊆ kerϕι, so π restricts 
to kerϕ → kerϕι.

0 kerϕι

ι

Y (l, λ)
ϕι

ι

indlY
λ 0

0 kerϕ

π

IndlY
λ

ϕ

π

indlY
λ 0

In particular, kerϕι is a direct summand of kerϕ = Jl−1el ⊗
Bl

Y λ. By the proof of Theorem 2, the module 

Jl−1el ⊗Mλ has a cell filtration. By the assumption on the characteristic of the field, cell filtrations restrict 

Bl
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to direct summands, so kerϕ and kerϕι lie in F(Θ). Since F(Θ) is extension-closed, we get kerΨ ∈ F(Θ)
and so Y (l, λ) is a relative projective cover of Θ(l, λ). ◻

Corollary 22 ([5], Corollary 12.4). If Bl is a group algebra of a symmetric group Σl′ for some l′ ∈ N, 
chark = p ∈ Z≥0 ∖{2, 3}, and A satisfies (I) to (IV), then Y (l, λ) is projective if and only if λ is p-restricted.

4.3. Schur-Weyl duality

In [5], the Young modules Ypr(l, λ) of a cellularly stratified algebra A are defined as the relative projective 
covers of the cell modules Θ(l, λ), in the case where the cell modules of the input algebras Bl form standard 
systems. Since we assumed Bl to be isomorphic to kΣl′ or Hk,q(Σl′) for some l′ ∈ N and chark ∈ Z≥0∖{2, 3}, 
respectively h ≥ 4, we are in this situation (Lemma 20). Therefore, we have the following corollary of 
Theorem 3.

Corollary 23. The Young modules Ypr(l, λ), defined abstractly in [5], coincide with the explicitly defined 
Young modules Y (l, λ) of this article.

In particular, we are in the situation of Theorem 13.1 from [5]:

Corollary 24. Let A be cellularly stratified, such that the input algebras Bl are isomorphic to group algebras 
of symmetric groups or their Hecke algebras and Bn ⊆ Bn+1 for all 0 ≤ n < r. Assume that the idempotents el
are fixed by the involution j of A and that the assumptions(I) to (IV) are satisfied. Let chark ∈ Z≥0 ∖ {2, 3}
(or h ≥ 4). Then the following holds.

(1) Each M ∈ F(Θ) has well-defined filtration multiplicities.
(2) The category FA(Θ) of cell filtered A-modules is equivalent, as exact category, to the category 

FEndA(Y )(Δ) of standard filtered modules over the quasi-hereditary algebra EndA(Y ), where

Y = ⊕
(l,λ)∈Λr

Y (l, λ)nl,λ

and nl,λ =
⎧⎪⎪⎨⎪⎪⎩

dimL(l, λ) if there is a simple module L(l, λ)
1 otherwise.

(3) There is a Schur-Weyl duality between A and EndA(Y ). In particular, we have A = EndEndA(Y )(Y ).

Remark. The multiplicities nl,λ of the Young modules Y (l, λ) in Y are chosen to be minimal such that all 
Young modules appear at least once and such that the projective Young modules appear as often as they 
appear in A, i.e. such that there is a D ∈ A −mod with Y = A ⊕D.

4.4. Decomposition of permutation modules

Using the results of the previous subsections, we are finally able to prove that permutation modules for 
A decompose into a direct sum of Young modules, just like permutation modules for Bl decompose into 
direct sums of Young modules.

Theorem 4. Let A be cellularly stratified, such that the input algebras Bl are isomorphic to group algebras 
of symmetric groups or their Hecke algebras and Bn ⊆ Bn+1 for all 0 ≤ n < l. Assume that the idempotent el
is fixed by the involution j of A which is compatible with the involutions of the Bn and that A satisfies the 
assumptions (I) to (IV). Let chark ∈ Z≥0 ∖ {2, 3} (or h ≥ 4). Let (l, λ) ∈ Λr. Then there is a decomposition
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IndlM
λ = ⊕

(m,μ)⪰(l,λ)
Y (m,μ)am,μ

with non-negative integers am,μ. Moreover, al,λ = 1.

Proof. By Lemma 20, the set Θ forms a standard system. Corollary 24 says that there is a quasi-hereditary 
algebra C = EndA(Y ) such that the categories FA(Θ) of cell filtered A-modules and FC(Δ) of standard 
filtered C-modules are equivalent, which was first established in [2]. To prove this equivalence, Dlab and 
Ringel show that there is a one-to-one correspondence between the modules in the standard system {Θ}
and the indecomposable relative projective modules in F(Θ). By Theorem 3, the Young modules Y (l, λ) are 
indecomposable relative projective. The one-to-one correspondence shows that these are all indecomposable 
relative projective A-modules, since for each (l, λ) ∈ Λr there is exactly one Young module and exactly one 
cell module, and these are all cell modules, cf. Proposition 12 part (2), Theorem 1 and Corollary 19. The 
algebra C is quasi-hereditary, so the relative projective C-modules are exactly the projective C-modules, cf. 
[21, Corollary 2], and they correspond under the equivalence to the relative projective A-modules. Hence, 
the projective C-modules are indexed by Λr.

The permutation module M(l, λ) is relative projective in F(Θ), so its image under the equivalence 
F(Θ) ∼�→F(Δ) is a projective C-module P . Let P = ⊕

(n,ν)∈Λr

P (n, ν)an,ν be a decomposition of P into 

indecomposable modules. Sending P (n, ν) back to F(Θ) through the equivalence, its image must be an 
indecomposable relative projective module Y (m, μ). Thus, M(l, λ) = ⊕

(m,μ)∈Λr

Y (m, μ)am,μ for some non-

negative integers am,μ. al,λ = 1 by definition of Y (l, λ). Lemmas 17 and 18 show that we only have to sum 
over those Young modules Y (m, μ) with (m, μ) ⪰ (l, λ). ◻

5. Applications

There are three main examples of cellularly stratified algebras in [5]: Brauer algebras, partition algebras 
and Birman-Murakami-Wenzl algebras (BMW algebras), a deformation of Brauer algebras. The results for 
Brauer algebras first appeared in [8]. With the theory from this article, we can recover their results, using 
less combinatorics specific to Brauer algebras but the more structural properties of cellularly stratified 
algebras, which have been introduced after the work of Hartmann and Paget on Brauer algebras appeared. 
We recover the results for Brauer algebras in Subsection 5.1, thus providing new proofs. In Subsection 5.2, 
we show that the results hold for partition algebras under certain additional assumptions. The theory fails 
for BMW algebras, since we need the cellular algebras Bl = Hk,q(Σl′) to be subalgebras. However, the 
q-Brauer algebras, defined by Wenzl in [22], are another deformation of Brauer algebras which fit into this 
setting. They are cellularly stratified as shown by Nguyen in his PhD thesis [18] and contain Hecke algebras 
as subalgebras. We do not prove that the q-Brauer algebras satisfy the assumptions in this article.

5.1. Recovering results for Brauer algebras

Let A = Bk(r, δ) ⊆ Pk(r, δ) be the Brauer algebra on r dots with δ ∈ k. If r is even, let δ ≠ 0. Then by [5, 
Proposition 2.4], A is cellularly stratified with stratification data

(kΣt, Vt, kΣt+2, Vt+2, ..., kΣr−2, Vr−2, kΣr, Vr),

where t = 0 if r is even and t = 1 if r is odd, and Vl is the vector space with basis consisting 
of partial diagrams with exactly r−l horizontal arcs. The idempotents el are defined as el = 1

r−l ⋅
2 δ 2
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1● ...
l● ● ● ... ● r●

● ... ● ● ● ... ● ●
for δ ≠ 0. For δ = 0 (and r odd), we use

el =
1● ... ● l● ● ● ... ● r●

● ... ● ● ● ... ● ● ●
.

In case δ = 0 we do not have j(el) = el, where j is the involution flipping a diagram over a horizontal 
axis running between the rows of dots, but we explained in the remark below Proposition 5 how we can still 
apply the proposition in this case.

We want to recover the results from [8], so we have to show that the Young modules defined here coincide 
with those defined in [8] as indecomposable submodules of IndlY λ with quotient Vl ⊗

k

Y λ. The module 

structure on Vl ⊗
k

X is defined as follows. Let b ∈ Bk(r, δ) be a basis element and let v ⊗ x ∈ Vl ⊗
k

X. Then

b(v ⊗ x) = (bv) ⊗ π(b, v)x

where bv is the partial diagram obtained by writing b on top of v, identifying bottom(b) with v and following 
the new connections in top(b), multiplying by δ for each closed loop. If the result is not in Vl, set bv = 0. 
The permutation π(b, v) is given by the permutation of the free dots of v in bv.

Example. Let b =
● ● ● ●
● ● ● ●

∈ Bk(4, δ) and v = ● ● ● ● ∈ V2. Then

bv = δ#closed loopstop
⎛
⎜⎜⎜
⎝

● ● ● ●
● ● ● ●
● ● ● ●

⎞
⎟⎟⎟
⎠
= δ ● ● ● ● and π(b, v) = (1, 2).

Proposition 25. For any X ∈ kΣl −mod, there is an isomorphism indlX ≃ Vl ⊗
k

X of Bk(r, δ)-modules.

Proof. Let X ∈ kΣl −mod and consider the map

ϕ ∶ Vl ⊗k X�→(A/Jl−2)el ⊗
kΣl

X

v ⊗ x 3→ (dv + Jl−2) ⊗ x,

where dv is the diagram in Jlel∖Jl−2el with top(dv) = v and non-crossing propagating lines.3 Let (ael+Jl−2) ⊗
x ∈ (A/Jl−2)el ⊗

kΣl

X, with ael+Jl−2 corresponding to b ⊗w⊗vl under the isomorphism Jl/Jl−2 ≃ kΣl⊗kVl⊗kVl, 

i.e. ael+Jl−2 = dwb +Jl−2. Then ϕ(w⊗bx) = (dw+Jl−2) ⊗bx = (dwb +Jl−2) ⊗x = (ael+Jl−2) ⊗x, so ϕ is surjective. 
By [5, Proposition 3.5], dim((A/Jl−2)el ⊗

kΣl

X) = dim(kΣdimVl

l ⊗
kΣl

X) = dimVl ⋅dimX = dim(Vl⊗kX). Hence, ϕ
is bijective. To see that ϕ is an isomorphism, we have to check that it is A-linear. Let a ∈ A and v⊗x ∈ Vl⊗kX. 
Then

ϕ(a(v ⊗ x)) = ϕ(av ⊗ π(a, v)x)
= (dav + Jl−2) ⊗ π(a, v)x
= (davπ(a, v) + Jl−2) ⊗ x

and

3 Since dv is in Jlel, its bottom row is fixed: l free dots followed by r−l
2 horizontal arcs sitting side by side.
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aϕ(v ⊗ x) = a((dv + Jl−2) ⊗ x)
= (adv + Jl−2) ⊗ x.

If adv ∈ Jl−2 then aϕ(v ⊗ x) = (adv + Jl−2) ⊗ x = 0. On the other hand, adv ∈ Jl−2 implies that av has more 
than r−l2 horizontal arcs, so ϕ(a(v ⊗ x)) = ϕ(av ⊗ π(a, v)x) = ϕ(0) = 0. If adv has l propagating lines, then 
a ∈ Jm ∖ Jl−2 for some m ≥ l and m − l of the free dots4 of top(a) are bound by horizontal arcs in adv

since the product lies in Jl. The remaining l free dots of top(a) are end points of propagating lines in adv. 
Therefore, the permutation of the propagating lines of adv is π(a, v). This shows aϕ(v⊗x) = (adv+Jl−2) ⊗x =
(davπ(a, v) + Jl−2) ⊗ x = ϕ(a(v ⊗ x)) and ϕ is A-linear. ◻

Corollary 26. The cell, Young and permutation modules defined here coincide with those defined in [8].

It remains to verify that A = Bk(r, δ), with δ ≠ 0 if r is even, satisfies the assumptions (I) to (IV). Let 
0 ≤ n ≤ l ≤ r.

The right action of kΣl −mod on Jnel permutes the dots of the bottom row, but it never changes the 
amount of horizontal arcs, so assumption (I) is satisfied. Assumption (II) holds by [6, Lemma 4.3]. By [6, 
Lemma 4.2], en(Jn/Jn−2)el ≃ k ⊗

H×kΣn

kΣl, where H ∶= k(C2 ≀ Σ l−n
2
). We get the following isomorphisms of 

kΣn-modules

resnIndlM
λ ≃ en(Jn/Jn−2)el ⊗

kΣl

Mλ ≃ k ⊗
H×kΣn

kΣl ⊗
kΣl

Mλ ≃ k ⊗
H×kΣn

kΣl ⊗
kΣλ

k.

The last module is equal to a direct sum of kΣn-permutation modules Mν by [6, Lemma 4.5]. Therefore, 
resnIndlM

λ ∈ Fn(S) and assumption (III) is satisfied. The restriction of a cell module indnSν to kΣl−mod, 
with l ≥ n, is dual Specht filtered by [19, Proposition 8], thus A satisfies assumption (IV). This gives a new 
proof for the following theorem.

Theorem 5 ([8]). Let chark ≠ 2, 3. The Brauer algebra Bk(r, δ), with δ ≠ 0 if r is even, has permutation 
modules M(l, λ), which are a direct sum of indecomposable Young modules. The Young modules are the 
relative projective covers of the cell modules indlSλ. Every module admitting a cell filtration has well-defined 
filtration multiplicities.

5.2. New results for partition algebras

Now, let A = Pk(r, δ) be the partition algebra on r dots with δ ∈ k ∖ {0}. Then A is cellularly stratified 
by [5, Proposition 2.6]. The cellularly stratified structure was described in Section 2.3. We use the following 
embedding of kΣl into Pk(r, δ). Let d(π) ∈ Pk(l, δ) be the diagram describing the permutation π ∈ Σl, i.e. the 
dot i in the top row is connected to the dot π(i) in the bottom row, and these are all the connections. Then 
d(π) becomes an element of Pk(r, δ) by attaching dots l+ 1, ..., r to the right of the top row and connecting 
all these new dots to the lth dot of the top row. Do the same for the bottom row. This embedding agrees 
with the isomorphism Pk(l, δ) ≃ elPk(r, δ)el from Lemma 8. In particular, for each 0 ≤ l ≤ r, the input 
algebra kΣl of the cellularly stratified structure is a subalgebra of elAel (see Corollary 9).

Example. Let π = (1 4 3 2) ∈ Σ4 and let r = 7. Then d(π) =
● ● ● ●
● ● ● ●

is clearly an element of 

Pk(4, δ). The corresponding element in Pk(7, δ) is 
● ● ● ● ● ● ●
● ● ● ● ● ● ●

.

4 In this case, a free dot is a dot which does not belong to a horizontal arc.
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Furthermore, j(el) = el for each l, where j is the involution flipping a diagram upside-down, so we can 
apply Proposition 5. It remains to show that A satisfies conditions (I) to (IV). Fix some l between 0 and r
and remember that Jl denotes the two-sided ideal AelA, generated, as a vector space, by diagrams with at 
most l propagating parts. Set J−1 ∶= 0. There is a bijective map Jn∖Jn−1 → Jn/Jn−1 sending a diagram with 
exactly n propagating parts to its residue class. Hence, we can ignore the residue classes in many cases.

The right action of kΣl on a partition diagram d ∈ Ael permutes the bottom row of d, but it never 
changes the size of a part of d. In particular, the number of propagating lines remains invariant under 
the kΣl-action,5 so Jnel ≃ (Jn/Jn−1)el ⊕ Jn−1el is a decomposition of kΣl-modules, so assumption (I) is 

satisfied. For example, if π = (1 4 3 2) ∈ kΣ4 and d =
● ● ● ● ● ● ●
● ● ● ● ● ● ●

∈ (J3 ∖ J2)e4, then 

dπ
● ● ● ● ● ● ●
● ● ● ● ● ● ●

∈ (J3 ∖ J2)e4. Note that πd ∈ J2e4.

For 0 ≤ n ≤ l, the basis diagrams of (Jn/Jn−1)el have exactly n propagating parts and the last r− l+1 dots 
of the bottom row belong to the same part. Hence, we have an isomorphism of vector spaces (Jn/Jn−1)el ≃
kΣn ⊗k Vn ⊗k V

l
n, where Vn is the vector space of partial diagrams with exactly n labelled parts and V l

n is 
the subspace of Vn where the last r − l + 1 dots belong to the same part. For example, the diagram d above 
corresponds to the tensor product (1 3) ⊗ top(d) ⊗ bottom(d). This shows assumption (II′) is satisfied and 
thus, by Lemma 21, assumption (II) is satisfied as well.

Assumption (IV) holds by [20, Theorem 1] in case chark > ⌊ r3⌋. The condition on the characteristic is 
sufficient, but potentially too strong, as explained in [20].

We now prove that assumption (III) is satisfied, i.e. we show that the left kΣn-module resnIndlMλ ≃
en(A/Jn−1)el ⊗

kΣl

Mλ admits a filtration by dual Specht modules for n ≤ l.
Fix 0 ≤ n ≤ l ≤ r. When dealing with the size of a part in a partial diagram, we will from now on count 

the last r − l + 1 dots as one. Let v, w ∈ V l
n. We say that v is equivalent to w, v ∼ w, if and only if there is a 

π ∈ Σl such that vπ = w, where vπ is defined as follows. Write the diagram π below v and identify top(π)
with v. Then vπ is the bottom row of this diagram, where a part is labelled if and only if it contains at 
least one labelled dot. In diagrams, this means that v and w are equivalent if and only if for each size, the 
number of labelled parts and the number of unlabelled parts of v and w coincide. Remember that the last 
r − l + 1 dots count as one.

Example. Let r = 5. The partial diagram v = ○ ● ● ○ ○ ∈ V 4
2 is equivalent to

vπ = bottom
⎛
⎝
○ ● ● ○ ○
● ● ● ● ●

⎞
⎠
= ● ● ○ ○ ○

where π = (1 4 3 2) ∈ Σ4. Both v and vπ have two labelled singletons and one unlabelled part of size two.

For v ∈ V l
n, we define dv to be the diagram in Pk(r, δ) with top(dv) = top(en), bottom(dv) = v and 

Π(dv) = 1kΣn
. Let b ∈ en(A/Jn−1)el be a diagram with bottom(b) ∼ v. By definition, there is a π ∈ Σl such 

that bottom(b) = vπ. Then b = Π(b)Π(dvπ)−1dvπ.

Example (continued). dv =
● ● ● ● ●
● ● ● ● ●

.

5 Note that this statement is usually wrong for d ∈ A ∖Ael, since two different labelled parts of bottom(d) containing dots ≥ l
will be identified by right multiplication with π = elπel.
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For b =
● ● ● ● ●
● ● ● ● ●

we have bottom(b) = v(3 4) and

Π(b)Π(dvπ)−1dvπ = (12)
● ● ● ● ●
● ● ● ● ●

=
● ● ● ● ●
● ● ● ● ●

= b.

Let Uv be the (kΣn, kΣl)-bimodule generated by dv.

Lemma 27 ([20, Lemma 1]). The (kΣn, kΣl)-bimodule en(A/Jn−1)el decomposes into ⊕
v∈V l

n/∼
Uv.

Example (continued). As symmetric group bimodule, e2(A/J1)e4 is spanned by the diagrams with bottom 
rows equivalent to one of

v1 = ○ ○ ● ● ● , v2 = ○ ○ ○ ● ● ,

v3 = ○ ○ ○ ○ ○ , v4 = ○ ○ ○ ○ ○

Left multiplication of dv with Σ2 affects only the propagating lines, while right multiplication of dv with 
Σ4 affects both propagating lines and the bottom row. However, the sizes of the parts remain invariant, so 

the sum is direct and we have e2(A/J1)e4 =
4
⊕
i=1

Uvi . The partial diagram v we studied before is equivalent 
to v1, so dv ∈ Uv1 .

Fix a partial diagram v ∈ V l
n and set d ∶= dv. Let αi be the number of labelled parts of size i and βi

the number of unlabelled parts of size i of v, where again the last r − l + 1 dots count as one dot. Set 
α ∶= (α1, α2, ...) and β ∶= (β1, β2, ...) be the corresponding compositions. Then ∑

i
(αi ⋅ i) + ∑

i
(βi ⋅ i) = l and 

∑
i
αi = n. Without loss of generality, assume that the parts of v are ordered as follows. The labelled parts are 

on the left hand side, the unlabelled parts on the right hand side. The parts are then ordered increasingly 
from left to right.

Example (continued). The partial diagrams vi are all ordered in this way. We have α(v1) = (2), α(v2) = (1, 1), 
α(v3) = (1, 0, 1), α(v4) = (0, 2) and β(v1) = (0, 1), β(v2) = (1), β(v3) = β(v4) = ().

Let Sj
i ⊆ {1, ..., l} be the set of dots of v belonging to the jth labelled part of size i and let T j

i ⊆ {1, ..., l} be 
the set of dots of v belonging to the jth unlabelled part of size i. Then ∏α ∶= ∏

i≥1,αi≠0
((ΣS1

i
× ... ×ΣSαi

i
) ⋊Σαi

)

is the stabilizer subgroup of Σl which stabilizes exactly the labelled parts of v. Similarly, the stabilizer 
subgroup of Σl which stabilizes the unlabelled parts of v is ∏β ∶= ∏

i≥1,βi≠0
((ΣT 1

i
× ... × ΣT βi

i

) ⋊ Σβi
). In 

particular, ∏β stabilizes d, while ∏α permutes the propagating lines of d. Note that ∏α ≃ ∏
i≥1,αi≠0

(Σi ≀Σαi
)

and ∏β ≃ ∏
i≥1,βi≠0

(Σi ≀Σβi
), where ≀ denotes the wreath product. Define a right-action of ∏α × ∏β on kΣn

via η ⋅ ζ ∶= ηΠ(dζ) for η ∈ Σn and ζ ∈ ∏α × ∏β , i.e. ∏α × ∏β acts on kΣn via the canonical epimorphism

ρ ∶ ∏
i≥1,αi≠0

(Σi ≀Σαi
) × ∏

i≥1,βi≠0
(Σi ≀Σβi

) ↠ Σα.

Then we can define the tensor product kΣn ⊗
k∏α ×k∏β

kΣl.

Example (continued). For v1 we have ∏α = (Σ{1} ×Σ{2}) ⋊Σ2 ≃ Σ1 ≀Σ2 ≃ Σ2 and ∏β = Σ{3,4} ⋊Σ1 ≃ Σ2 and 
the canonical projection ρ ∶ Σ2 ×Σ2 ↠ Σ2 (projection onto the first factor).
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For v4 we have ∏α = (Σ{1,2}×Σ{3,4}) ⋊Σ2 ≃ Σ2 ≀Σ2 and ∏β = ⟨1⟩ and the canonical projection ρ ∶ Σ2 ≀Σ2 ↠
Σ2 (factoring out the base group of the wreath product).

Lemma 28 ([20, Lemma 2]). There is an isomorphism of (kΣn, kΣl)-bimodules kΣn ⊗
k∏α ×k∏β

kΣl �→ Uv

given by η ⊗ τ 3→ ηdτ .

We want to understand the summands kΣn ⊗
k∏α ×k∏β

kΣl ⊗
kΣλ

k of resnIndlMλ = en(A/Jn−1)el ⊗
kΣl

kΣl ⊗
kΣλ

k

for a partition λ of l. Fix double coset representatives π1, ..., πq of (∏α × ∏β)/Σl/Σλ. To each πi, we attach a 
composition νi as follows. Set ∏νi ∶= (∏α × ∏β) ∩πiΣλπ

−1
i . Then ζ ∈ ∏α × ∏β is in ∏νi if and only if there is 

a ϑ ∈ Σλ such that ζπi = πiϑ. Since πiΣλπ
−1
i is isomorphic to Σλ, it is a Young subgroup of Σl, and ∏α × ∏β

is a direct product of wreath products of symmetric groups. Thus the intersection (∏α × ∏β) ∩πΣλπ
−1 is a 

subgroup of a product of wreath products. The image of ∏νi under the canonical epimorphism ρ is a Young 
subgroup of Σn, which we denote by Σνi .

Example (continued). For v = v4 and λ = (22) = (2, 2), we get the coset representatives π1 = 1 and π2 = (2, 3). 
Then ∏ν1 = Σλ, Σν1 = ⟨1⟩ and ∏ν2 = ⟨(1 3)(2 4)⟩, Σν2 = Σ2.

A bigger example for Πνi , Σνi and a GAP-algorithm to compute them can be found in Appendix B
and C.

Proposition 29. The left kΣn-module kΣn ⊗
k(∏α ×∏β)

kΣl ⊗
kΣλ

k is isomorphic to the direct sum 
q

⊕
i=1
(kΣn ⊗

kΣ
νi

k)

of various permutation modules. In particular, it admits a filtration by dual kΣn-Specht modules.

Proof. We define a map

ϕ ∶ kΣn ⊗
k(∏α ×∏β)

kΣl ⊗
kΣλ

k �→
q

⊕
i=1
(kΣn ⊗

kΣ
νi

k)

as follows. Let η ∈ Σn and τ ∈ Σl with τ = ζπiϑ for some ζ ∈ ∏α × ∏β and ϑ ∈ Σλ. Set ϕ(η ⊗ τ ⊗ 1) =
(0, ..., 0, ηΠ(dζ) ⊗ 1, 0, ..., 0) =∶ (ηΠ(dζ) ⊗ 1)(i) with non-zero entry only in the ith summand. Extend this 
kΣn-linearly to get a kΣn-homomorphism.

We have to show that this map is well-defined, that is we have to show that whenever two elements η⊗τ⊗1
and η′ ⊗ τ ′ ⊗ 1 are equivalent in kΣn ⊗

k(∏α ×∏β)

kΣl ⊗
kΣλ

k, then their images are equivalent in 
q

⊕
i=1
(kΣn ⊗

kΣ
νi

k).

Let η ⊗ τ ⊗ 1 = η′ ⊗ τ ′ ⊗ 1 with η, η′ ∈ Σn and τ, τ ′ ∈ Σl and let τ = ζπiϑ and τ ′ = ζ ′πjϑ
′. Since 

η ⊗ τ ⊗ 1 = η′ ⊗ τ ′ ⊗ 1, we have i = j and ηΠ(dζ) = η′Π(dζ ′). It follows that ϕ(η ⊗ τ ⊗ 1) = ϕ(η ⊗ ζπiϑ ⊗ 1) =
(ηΠ(dζ) ⊗ 1)(i) = (η′Π(dζ ′) ⊗ 1)(i) = ϕ(η′ ⊗ τ ′ ⊗ 1), so ϕ is well-defined.

The inverse is given by

ψ ∶
q

⊕
i=1
(kΣn ⊗

kΣ
νi

k) �→ kΣn ⊗
k(∏α ×∏β)

kΣl ⊗
kΣλ

k

with ψ(
q

∑
i=1
(ηi ⊗ 1)(i)) =

q

∑
i=1

ηi ⊗ πi ⊗ 1 for ηi ∈ Σn:

(ψ ○ ϕ)(η ⊗ ζπiϑ⊗ 1) = ψ((ηΠ(dζ) ⊗ 1)(i)) = ηΠ(dζ) ⊗ πi ⊗ 1 = η ⊗ ζπiϑ⊗ 1

and

(ϕ ○ ψ)((η ⊗ 1)(i)) = ϕ(η ⊗ πi ⊗ 1) = (η ⊗ 1)(i)
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for η ∈ Σn, ζ ∈ ∏α × ∏β and ϑ ∈ Σλ.
It remains to show that ψ is well-defined. Let η, η′ ∈ Σn such that η ⊗ 1 and η′ ⊗ 1 are equivalent in 

kΣn ⊗
kΣ

νi

k for some i. Then there is a ξ ∈ Σνi such that η′ = ηξ. It follows that ψ((η′ ⊗ 1)(i)) = η′ ⊗ πi ⊗ 1 =

ηξ ⊗ πi ⊗ 1 = η ⊗ ξ̂πi ⊗ 1 for some ξ̂ ∈ ∏α with Π(dξ̂) = ξ. By definition of Σνi as the image of the canonical 
projection ∏νi → Σn, we have ξ̂ ∈ πiΣλπ

−1
i . So there is a ϑ ∈ Σλ such that ξ̂πi = πiϑ. Therefore we have 

ψ((η′ ⊗ 1)(i)) = η ⊗ πiϑ ⊗ 1 = η ⊗ πi ⊗ 1 = ψ((η ⊗ 1)(i)) and ψ = ϕ−1 is well-defined. ◻

Example (continued). Uv4 ⊗
kΣ
(22)

k ≃ kΣ2 ⊗
k(Σ2 ≀Σ2)

kΣ4 ⊗
kΣ
(22)

k ≃ kΣ2 ⊗
kΣ1

k⊕kΣ2 ⊗
kΣ2

k ≃ kΣ2⊕k as left kΣ2-modules. 

In detail, these isomorphisms, evaluated at basis diagrams, look as follows.

● ● ● ● ●
● ● ● ● ●

⊗ 1 ↦ 1⊗ 1⊗ 1 = 1⊗ π1 ⊗ 1 ↦ (1⊗ 1,0) ↦ (1,0)

● ● ● ● ●
● ● ● ● ●

⊗ 1 ↦ (12) ⊗ 1⊗ 1 = (12) ⊗ π1 ⊗ 1 ↦ ((12) ⊗ 1,0) ↦ ((12),0)

● ● ● ● ●
● ● ● ● ●

⊗ 1 ↦ 1⊗ (23) ⊗ 1 = 1⊗ π2 ⊗ 1 ↦ (0,1⊗ 1) ↦ (0,1)

All diagrams in Uv4 which are not displayed here are equivalent to the diagram in the right row in Uv4 ⊗
kΣλ

k. 

It is left for the reader to check that they are all sent to (0, 1) via the isomorphism.

Corollary 30. Layer restriction of a permutation module is isomorphic to a direct sum of permutation mod-
ules. In particular, layer restriction of a permutation module has a dual Specht filtration.

Proof. For n > l, we have resnIndlMλ = 0, so the statement is true. For n ≤ l, we can apply Lemmas 27, 28
and Proposition 29 to get a decomposition

resnIndlM
λ ≃ ⊕

v∈V l
n/∼

q(v)
⊕
i=1

(kΣn ⊗
kΣ

νi(v)

k) ∈ Fn(S). ◻

This shows that assumption (III) is satisfied and we can conclude the following theorem.

Theorem 6. Let r ∈ N and let k be an algebraically closed field with chark = 0 or at least max{5, ⌊ r3⌋}. 
Then the partition algebra Pk(r, δ), with δ ≠ 0, has permutation modules M(l, λ), which are a direct sum of 
indecomposable Young modules. The Young modules are relative projective covers of the cell modules indlSλ. 
Every module admitting a cell filtration has well-defined filtration multiplicities.
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Appendix A. Example for the functors defined in §2.4

We want to illustrate the functors indl, resl, Indl and Resl on small examples. Let A be the partition 
algebra Pk(3, δ) for some algebraically closed field k of characteristic ≠ 2 and let Bl = kΣ2.

First, let us understand the structures Ae2, J1 = Ae1A, A/J1, (A/J1)e2 and e2Ae2. The set e2Ae2 is an 
idempotent subalgebra of A and a (kΣ2, kΣ2)-bimodule. As a vector space, e2Ae2 has basis

⎧⎪⎪⎨⎪⎪⎩

● ● ●
● ● ●

,
● ● ●
● ● ●

,
● ● ●
● ● ●

,
● ● ●
● ● ●

,
● ● ●
● ● ●

,
● ● ●
● ● ●

,
● ● ●
● ● ●

⎫⎪⎪⎬⎪⎪⎭
.

The set Ae2 is an (A, e2Ae2)-bimodule, generated by diagrams with arbitrary top row and bottom row 
● ● ● (with arbitrary labelling), and dimk Ae2 = 32. The set J1 = Ae1A is an (A, A)-bimodule gen-

erated by all diagrams with at most one propagating part, and dimk J1 = 125. The quotient A/J1 is the 
(A, A)-bimodule generated by residue classes of diagrams with at least two propagating lines, modulo J1, 
and dimk A/J1 = 78. Multiplication with e2 (from the right) restricts the number of propagating lines to 
be at most two (and thus exactly two) and fixes the bottom row to be ○ ○ ○ . Thus the diagrams in 
(A/J1)e2 are uniquely determined by their top rows (with exactly two labelled parts) and whether or not 
the propagating lines cross. The action of kΣ2 on a diagram is given by the embedding

1 ↦
● ● ●
● ● ●

, (12) ↦
● ● ●
● ● ●

.

Thus the right action of (1 2) on (A/J1)e2 changes whether or not the propagating lines cross.

Let S(1,1) be the Specht module in kΣ2 −mod generated by the polytabloid s ∶= 1
2
− 2

1
, i.e. S(1,1) is the 

sign-module for kΣ2. Then

ind2S(1,1) ≃ (A/J1)e2 ⊗
kΣ2

S(1,1)

is generated by tensor products d ⊗ s where s is the generator of S(1,1) and d is a diagram in (A/J1)e2 with 
non-crossing propagating lines.6 In particular,

ind2S(1,1) ≃ V 3
2

as a vector space, and dimk ind2S(1,1) = 2. On the other hand, we have

Ind2S(1,1) = Ae2 ⊗
kΣ2

S(1,1)

generated by tensor products d ⊗ s with d ∈ Ae2 with non-crossing propagating lines. In particular, d might 
have less than two propagating lines. As a vector space, we have

Ind2S(1,1) ≃ ind2S(1,1) ⊕ (J1e2 ⊗ S(1,1)).

If d ∈ J0e2 ⊂ J1e2 then d = d(1 2), so d ⊗s = d(1 2) ⊗s = d ⊗−s = −(d ⊗s). Therefore, J0e2 ⊗
kΣ2

S(1,1) = 0. The set 

(J1 ∖ J0)e2 is 20-dimensional, and J1e2 ⊗
kΣ2

S(1,1) identifies each basis diagram with the negative of another 

one, e.g. 
● ● ●
● ● ●

⊗s = −
● ● ●
● ● ●

⊗s, so dimk J1e2 ⊗
kΣ2

S(1,1) = 10 which implies dimk Ind2S(1,1,) = 12.

6 If d and d′ differ only by the crossing of propagating lines, then d′ ⊗ s = d(1 2) ⊗ s = d ⊗−s = −(d ⊗ s).
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Now, let N be the projective left A-module Ae1. Then

res2N = e2(A/J1) ⊗
A

Ae1 = e2(A/Jl−1) ⊗
A

J1e1 = e2(A/J1)J1 ⊗
A

Ae1 = 0,

while

Res2N = e2A⊗
A

Ae1 = e2Ae1

is generated by diagrams with at most one propagating part, top row ○ ● ● or ● ○ ○ and 
bottom row ● ● ● or ○ ○ ○ . In particular, Res2N ≠ 0.

Appendix B. Example for Proposition 29, calculated by hand

Example. Let v = ○ ○ ○ ○ ○ ○ ○ ● ● ∈ V 9
5 . The summand Uv of e5(A/J4)e9 ⊗

kΣ(7,2)
k is 

isomorphic to

(kΣ5 ⊗
kΣ(3,2)

k)2 ⊕ (kΣ5 ⊗
kΣ
(3,12)

k)2 ⊕ (kΣ5 ⊗
kΣ
(22,1)

k)2 ⊕ (kΣ5 ⊗
kΣ
(2,13)

k).

This can be verified as follows. We have ∏α × ∏β = Σ3 × (Σ2 × Σ2) × Σ2 and the set of double coset 
representatives is

{id, (78), (68)(79), (586)(79), (387654), (38654)(79), (2864)(3975)}.

The only transpositions in Σλ = Σ(7,2) leaving vπ invariant are those with both end points belonging to 
the same part λi. In the partial diagram vπ, mark these dots as ∗ if they were labelled. The only products 
of two disjoint transpositions (a b)(c d) leaving vπ invariant are those where a and c (or a and d) belong to 
the same part λi and b and d (or b and c, respectively) belong to the same part λj . Note that here, λi = λj is 
possible.7 Mark these dots as ◇ if they were labelled. Put vertical lines at the end of each part λi. Translate 
this back to v = vππ−1. We can read off Πν = ∏α ∩πΣλπ

−1 from the given information by the labelling of 
dots: ∗s of the same size become symmetric groups, ◇s become wreath products, if both end points a, b lie 
in the same part λi in vπ and the group generated by (a b)(c d) otherwise.8 We do this for each double coset 
representative in Table 1.

Appendix C. GAP code to compute summands of restriction of permutation modules for partition 
algebras

For a given summand Uv of en(A/Jn−1)el, the following GAP code calculates which Young subgroups 
Σνi appear in the decomposition of kΣn ⊗

k(∏α ×∏β)

kΣl ⊗
kΣλ

k ≃ Uv ⊗
kΣλ

k, given in Proposition 29.

As input, we need G= Σl, H= ∏α × ∏β and K= Σλ, as well as the list imgs of images of the generators of H
under the canonical epimorphism ∏α × ∏β ↠ Σn, sending ζ to Π(dζ). We state the code for the example 
in Appendix B.

7 In this case, the transpositions (a b) and (c d) belong to the first group of dots (∗ or ⋆) as well.
8 It does not make a difference for Σν which of the two cases we have, since the projection onto Σn is the same.
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Table 1
Diagrammatic deduction of Young subgroups Σν .

πi
vπi Πν Σνv

1 ∗ ∗ ∗ ◇ ◇ ◇ ◇ ∣ ● ● Σ3 × (Σ2 ≀Σ2) = ∏α Σ(3,2)
∗ ∗ ∗ ◇ ◇ ◇ ◇ ∣ ● ●

(78) ∗ ∗ ∗ ∗ ∗ ○ ● ∣ ○ ● Σ(3,2,12) Σ(3,12)

∗ ∗ ∗ ∗ ∗ ○ ○ ∣ ● ●

(68)(79) ∗ ∗ ∗ ∗ ∗ ● ● ∣ ∗ ∗ Σ(3,22) Σ(3,12)

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∣ ● ●

(586)(79) ∗ ∗ ∗ ◇ ◇ ● ● ∣ ◇ ◇ Σ3 × ⟨(46)(57)⟩ Σ(3,2)
∗ ∗ ∗ ◇ ◇ ◇ ◇ ∣ ● ●

(387654) ∗ ∗ ◇ ◇ ◇ ◇ ● ∣ ○ ● Σ(2,1) × (Σ2 ≀Σ2) Σ(2,1,2)
∗ ∗ ○ ◇ ◇ ◇ ◇ ∣ ● ●

(38654)(79) ∗ ∗ ∗ ∗ ○ ● ● ∣ ○ ○ Σ(2,1,2,12) Σ(2,13)

∗ ∗ ○ ∗ ∗ ○ ○ ∣ ● ●

(2864)(3975) ○ ◇ ◇ ◇ ◇ ● ● ∣ ∗ ∗ Σ(1,2) × (Σ2 ≀Σ2) Σ(1,22)

+ ○ ∗ ∗ ◇ ◇ ◇ ◇ ∣ ● ●

INPUT: S2:=SymmetricGroup(2); S3:=SymmetricGroup(3);
S5:=SymmetricGroup(5); S7:=SymmetricGroup(7); # abbreviations
G:= SymmetricGroup(14); H:=DirectProduct(S3,WreathProduct(S2,S2),S2);
K:=DirectProduct(S7,S2); # G = Σl, H = ∏α × ∏β , K = Σλ.

gens:=GeneratorsOfGroup(H);

imgs:=[(1,2,3),(1,2),(),(),(4,5),()];

# to each generator gens[i], set
# imgs[i]:=the image of gens[i]
# under the canonical epimorphism 
# ∏α × ∏β ↠ Σ5.

hom:=GroupHomomorphismByImages(H,S5,gens,imgs);

iso=function(G,H,K)
local L, r, R, Pinu, Snu;
L:=[]; R:=List(DoubleCosets(G,H,K),Representative);
for r in R do
Pinu∶=Intersection(H,ConjugateSubgroup(K,r^-1));
Snu∶=Image(hom,Pinu);
Add(L,Snu);
od;
return L;
end;

OUTPUT: list L of all appearing Young subgroups Σνi =Snu of Σ5 =S5.
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