期刊论文详细信息
JOURNAL OF PURE AND APPLIED ALGEBRA 卷:224
Singularity categories of derived categories of hereditary algebras are derived categories
Article
Kimura, Yuta1 
[1] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
关键词: Functor category;    Repetitive category;    Hereditary algebra;    Tilting subcategory;    Dualizing variety;   
DOI  :  10.1016/j.jpaa.2019.06.013
来源: Elsevier
PDF
【 摘 要 】

We show that for the path algebra A of an acyclic quiver, the singularity category of the derived category D-b(modA) is triangle equivalent to the derived category of the functor category of mod A, that is, D-sg (D-b(modA)) similar or equal to D-b(mod(mod A)). This extends a result in [14] for the path algebra A of a Dynkin quiver. An important step is to establish a functor category analog of Happel's triangle equivalence for repetitive algebras. (C) 2019 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jpaa_2019_06_013.pdf 541KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次