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We show that for the path algebra A of an acyclic quiver, the singularity category 
of the derived category Db(modA) is triangle equivalent to the derived category of 
the functor category of modA, that is, Dsg(Db(modA)) � Db(mod(modA)). This 
extends a result in [14] for the path algebra A of a Dynkin quiver. An important 
step is to establish a functor category analog of Happel’s triangle equivalence for 
repetitive algebras.
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1. Introduction

Let k be a field and A be a finite dimensional k-algebra. In [14], it was shown that if A is a representation-
finite hereditary algebra, then there exists a triangle equivalence

mod Db(modA) � Db(modB), (1.1)

where B is the stable Auslander algebra of A, modDb(modA) is the Frobenius category of finitely presented 
functors from Db(modA) to the category of abelian groups Ab, and modDb(modA) is its stable category.

In this paper, we extend the triangle equivalence (1.1) to the case when A is a representation-infinite 
hereditary algebra. In this case, the role of the stable Auslander algebra is played by the stable category 
modA of finitely generated A-modules. We denote by mod(modA) the category of finitely presented functors 
from the stable category modA to Ab. Our main result is the following.
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Theorem 1.1 (Theorem 4.5). Let A be a finite dimensional hereditary k-algebra. We have a triangle equiva-
lence

mod Db(modA) � Db(mod(modA)). (1.2)

Note that for a triangulated category T , the stable category mod T is triangle equivalent to the singu-
larity category Dsg(T ) = Db(modT )/Kb(proj T ) [9,25] (see Theorem 2.17). Thus (1.2) can be rewritten as 
Dsg(Db(modA)) � Db(mod(modA)).

To prove Theorem 1.1, we need to give general preliminary results on functor categories and repetitive 
categories. The functor category mod(modA) is an abelian category with enough projectives and enough 
injectives since the category modA forms a dualizing k-variety, which is a distinguished class of k-linear 
categories introduced by Auslander and Reiten [3]. A key role is played by the repetitive category R(modA)
of modA. Our first result implies that R(modA) is a dualizing k-variety.

Theorem 1.2 (Theorem 3.7). Let A be a dualizing k-variety. Then the repetitive category RA of A is a 
dualizing k-variety.

In particular, modRA is a Frobenius abelian category for any dualizing k-variety A. We denote by modRA
the stable category of modRA, which is triangulated.

In the case where A is a representation finite hereditary algebra, the following theorem by Happel [13]
plays an important role in the proof of the triangle equivalence (1.1): for a finite dimensional k-algebra A
of finite global dimension, the bounded derived category of A is triangle equivalent to the stable category 
of the repetitive algebra of A. In Section 3, we show a categorical analog of this triangle equivalence 
for dualizing k-varieties. In fact, we deal with the following more general class of categories including 
dualizing k-varieties. For a k-linear additive category A, we denote by projA the category of finitely generated 
projective A-modules and by modA the category of A-modules having resolutions by projA. We consider 
the following conditions:

(IFP) DA(X, −) is in modA for each X ∈ A, where D = Homk(−, k).
(G) DA(X, −) has finite projective dimension over A for each X ∈ A.

For example, if A is a dualizing k-variety, then A satisfies the condition (IFP). On the other hand, the 
condition (G) is a categorical version of Gorensteinness. Gorenstein-projective modules (also known as 
Cohen-Macaulay modules, totally reflexive modules) are an important class of modules. We denote by 
GP(RA, A) the category of Gorenstein-projective RA-modules of finite projective dimension as A-modules 
(see Subsection 3.2). We prove the following.

Theorem 1.3 (Corollaries 3.17, 3.18). Let A be a k-linear, Hom-finite additive category.

(a) Assume that A and Aop satisfy (IFP) and (G). Then we have a triangle equivalence

Kb(projA) � GP(RA,A).

(b) Assume that A is a dualizing k-variety. If each object of modA and mod(Aop) has finite projective 
dimension, then we have a triangle equivalence

Db(modA) � mod RA.
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We refer to [6,14,17,18,21,22,24,28] for recent results which realize stable categories as derived categories 
in different settings.

In Section 4, we show the following theorem, which together with Theorem 1.3 implies Theorem 1.1.

Theorem 1.4 (Theorem 4.3). Let A be a finite dimensional representation-infinite hereditary k-algebra. Then 
we have an equivalence of additive categories

R(modA) � Db(modA).

Notation. In this paper, we denote by k a field. All subcategories are full and closed under isomorphisms. 
Let C be an additive category and S be a subclass of objects of C or a subcategory of C. We denote by 
addS the subcategory of C whose objects are direct summands of finite direct sums of objects in S. For 
subcategories Ci (i ∈ I) of C, we denote by 

∨
i∈I Ci the smallest additive subcategory of C containing all Ci

and closed under direct summands. For objects X, Y ∈ C, we denote by C(X, Y ) the set of morphisms from 
X to Y in C. We call a category skeletally small if the class of isomorphism classes of objects is a set.

2. Preliminaries

Throughout this section, we assume that A is a skeletally small category.

2.1. Functor categories

In this subsection, we recall the definition of modules over categories. Let A be an additive category. An 
A-module is a contravariant additive functor from A to Ab, where Ab is the category of abelian groups. We 
denote by ModA the category of A-modules, where morphisms of ModA are morphisms of functors. Since 
A is skeletally small, ModA is a category. It is well known that ModA is abelian.

For two morphisms f : L → M and g : M → N of ModA, the sequence L → M → N is exact in ModA
if and only if the induced sequence L(X) → M(X) → N(X) is exact in Ab for any X ∈ A.

Example 2.1. For each X ∈ A, a representable functor A(−, X) is an A-module. By Yoneda’s lemma, 
A(−, X) is projective in ModA.

The following notation is basic and used throughout this paper. We call an A-module M finitely generated
if there exists an epimorphism A(−, X) → M in ModA for some X ∈ A. We denote by projA the subcategory 
of ModA consisting of all finitely generated projective A-modules. Note that finitely generated projective 
modules are precisely direct summands of representable functors. We need the following notation which is 
called FPn in some sources (e.g. [7,8]).

Definition 2.2. Let A be an additive category and n ≥ 0 be an integer.

(1) We denote by modnA the subcategory of ModA consisting of all A-modules M such that there exists 
an exact sequence

Pn → · · · → P1 → P0 → M → 0

in ModA, where Pi is in projA for each 0 ≤ i ≤ n.
(2) We denote by modA the subcategory of ModA consisting of all A-modules M such that there exists an 

exact sequence
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· · · → P2 → P1 → P0 → M → 0

in ModA, where Pi is in projA for each i ≥ 0.

The following lemma is a basic observation on modnA, see [8, Chapter VIII, Proposition 4.3, Lemma 4.4]
in the case where modules over a ring.

Lemma 2.3. The following statements hold for an additive category A.

(a) Let M ∈ modnA. Assume that there exists an exact sequence Pl → Pl−1 → · · · → P0 → M → 0 with 
Pi ∈ projA and l ≤ n. Then there exist Pl+1, . . . , Pn ∈ projA and an exact sequence Pn → Pn−1 →
· · · → P0 → M → 0 extending the given exact sequence.

(b) Let M ∈ ModA. Assume that there exist two exact sequences

0 → K → Pn → Pn−1 → · · · → P0 → M → 0,

0 → L → Qn → Qn−1 → · · · → Q0 → M → 0,

where Pi, Qi ∈ projA for each i ≥ 0. Then there exist P, Q ∈ projA such that K ⊕ P � L ⊕Q.

Proof. (a) This follows from (b).
(b) The case where n = 0 is well known as Schanuel’s Lemma. The case where n > 0 is shown by an 

induction on n and by using the case where n = 0. �
The following lemma gives a sufficient condition when an A-module is in modnA. For simplicity, we use 

the notation mod−1A := ModA, mod∞A := modA and ∞ − 1 := ∞.

Lemma 2.4. Let A be an additive category and M be an A-module. Then we have the following properties.

(a) modA =
⋂

n≥0 modnA holds.

(b) Let n ∈ Z≥0 ∪ {∞}. For an exact sequence 0 → L 
f−→ M → N → 0 in ModA with L ∈ modn−1A and 

M ∈ modnA, we have N ∈ modnA.
(c) Let n ≥ 0 be an integer. If there exists an exact sequence Xn

fn−−→ Xn−1
fn−1−−−→ · · · → X0

f0−−→ M → 0 in 
ModA with Xi ∈ modn−iA for any 0 ≤ i ≤ n, then we have M ∈ modnA.

(d) If there exists an exact sequence · · · → X2 → X1 → X0 → M → 0 in ModA with Xi ∈ modA for any 
i ≥ 0, then we have M ∈ modA.

Proof. (a) In general modA ⊂ modnA holds for each n ≥ 0. The converse follows from Lemma 2.3 (a).
(b) Assume that n �= ∞. We have the following double complex

Qn−1
gn−1

fn−1

· · · Q1
g1

f1

Q0
πL

f0

L

f

0

Pn
hn

Pn−1
hn−1

· · · P1
h1

P0 πM
M 0

in ModA, where all small squares are anticommutative, N = Cok(f), each horizontal sequence is exact 
except at Pn and Qn−1 respectively, and every Pi and Qi are in projA. We denote by M this double 
complex and denote by Tot(M) the total complex of M, that is, Tot(M)0 := M , Tot(M)−1 := L ⊕ P0, 
and Tot(M)−m := Qm−2 ⊕ Pm−1 for m = 2, . . . , n + 1, see [27, Subsection 1.2] more details. Since each 
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horizontal sequence is exact except at Pn and Qn−1 respectively, we have H−i(Tot(M)) = 0 for i = 0, . . . , n
by [27, Lemma 2.7.3]. Moreover, we denote by P a double complex which is obtained by removing L and 
M from M. Namely, Tot(P )−m = Qm−2 ⊕ Pm−1 for m = 1, . . . , n + 1, where Q−1 = 0, and Tot(P )−m = 0
if otherwise. Let X := (L 

f−→ M). Then we have a morphism of chain complexes of ModA, π = {πL, πM} :
Tot(P )[−1] → X with the mapping cone Tot(M). By taking homologies, we have H0(Tot(P )[−1]) � N and 
H−i(Tot(P )[−1]) = 0 for i = 1, . . . , n − 1. Since (Tot(P )[−1])−m ∈ projA for m = 0, . . . , n, N is an object 
of modnA. If n = ∞, then by a similar argument, we have the assertion.

(c) We show that Im(fi) ∈ modn−iA by a descending induction on i = n, n −1, . . . , 0. Since Xn ∈ mod0A, 
Im(fn) ∈ mod0A holds. Assume that Im(fi+1) ∈ modn−i−1modA holds. We have a short exact sequence 
0 → Im(fi+1) → Xi → Im(fi) → 0. By (b), we have Im(fi) ∈ modn−iA. Therefore, M = Im(f0) ∈ modnA
holds.

(d) By (c), we have M ∈ modnA for any n ≥ 0. Thus by (a), M ∈ modA holds. �
Let A be an abelian category and B be a subcategory of A. We say that B is a thick subcategory of A

if B is closed under direct summands and for any exact sequence 0 → X → Y → Z → 0 in A, if two of 
X, Y, Z are in A, then so is the third. We have the following observation on the categories modnA.

Lemma 2.5. Let A be an additive category. Then we have the following statements.

(a) modnA is closed under extensions and direct summands in ModA for each n ≥ 0.
(b) (e.g. [12, Proposition 2.6]) modA is a thick subcategory of ModA.

Proof. (a) By Horseshoe Lemma, modnA is closed under extensions in ModA. Let X ⊕ Y ∈ modnA. We 
show that X, Y ∈ modnA by an induction on n. If n = 0, then the claim is clear. Assume n > 0. Since 
X ⊕ Y ∈ modnA ⊂ modn−1A holds, by the inductive hypothesis, we have X, Y ∈ modn−1A. Then by 
Lemma 2.4 (b), we have X, Y ∈ modnA.

(b) By (a) and Lemma 2.4 (a), modA is closed under extensions and direct summands. Let 0 → L →
M → N → 0 be an exact sequence in ModA. By Lemma 2.4 (b), if L, M ∈ modA, then N ∈ modA
holds. Assume that M, N ∈ modA. There exists an exact sequence 0 → ΩN → P → N → 0 such that 
P ∈ projA and ΩN ∈ modA. By taking a pull-back diagram of M → N ← P , we have an exact sequence 
0 → ΩN → P ⊕ L → M → 0. Since modA is closed under extensions and direct summands, we have 
L ∈ modA. �
2.2. Gorenstein-projective modules

We define Gorenstein-projective modules. Let A be an additive category. We first define a contravariant 
functor

(−)∗ : ModA → Mod(Aop)

as follows: for M ∈ ModA and X ∈ Aop, let (M)∗(X) := (ModA)(M, A(−, X)). By the same way, we define 
a contravariant functor (−)∗ : Mod(Aop) → ModA. If M is a representable functor from A to Ab, then 
(M)∗ is also a representable functor from A to Ab by Yoneda’s lemma. Let P• := (Pi, di : Pi → Pi+1)i∈Z
be a complex of finitely generated projective A-modules. We say that P• is totally acyclic if complexes P•
and · · · → (Pi+1)∗ → (Pi)∗ → (Pi−1)∗ → · · · are acyclic.

Definition 2.6. Let A be an additive category. An A-module M is said to be Gorenstein-projective if there 
exists a totally acyclic complex P• of finitely generated projective A-modules such that Im d0 is isomorphic 
to M . We denote by GPA the full subcategory of ModA consisting of all Gorenstein-projective A-modules.
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For instance, a finitely generated projective A-module is Gorenstein-projective. In general, GPA ⊂ modA
holds. We see a fundamental property of Gorenstein-projective modules.

Let W be a subcategory of ModA. We denote by ⊥W the subcategory of ModA consisting of A-modules 
M satisfying ExtiModA(M, W ) = 0 for any W ∈ W and any i > 0. We denote by XW the subcategory of ⊥W
consisting of A-modules M such that there exists an exact sequence 0 → M → W0

f0−−→ W1
f1−−→ · · · with 

Wi ∈ W and Im fi ∈ ⊥W for any i ≥ 0. By [4, Proposition 5.1], Xproj A is closed under extensions, direct 
summands and kernels of epimorphisms in ModA.

Lemma 2.7. Let A be an additive category. Then the following holds.

(a) The functor (−)∗ : ModA → Mod(Aop) induces a duality (−)∗ : GPA → GP(Aop).
(b) Xproj A ∩ modA = GPA holds. In particular, GPA is closed under extensions, direct summands and 

kernels of epimorphisms in ModA.

Proof. (a) This follows from the definition of GPA and the fact that (−)∗ induces a duality between projA
and proj(Aop).

(b) By the definition of GPA, we have modA ⊃ GPA. Let M ∈ GPA and P• := (Pi, di : Pi → Pi+1)i∈Z
be a totally acyclic complex of finitely generated projective A-modules such that Im d0 is isomorphic to M . 
Since P• is a totally acyclic complex, Im di ∈ ⊥(projA) hold for every i ∈ Z. This, together with the exact 
sequence 0 → M → P1 → P2 → · · · , implies that M ∈ Xproj A.

Conversely, let M ∈ Xproj A ∩ modA. Then there exists an exact sequence P• = (Pi, di : Pi → Pi+1)i∈Z, 
where M � Im d0, Pi ∈ projA for any i ∈ Z and Im di ∈ ⊥(projA) for any i ≥ 1. We have a projective 
resolution · · · → Pi−2 → Pi−1 → Pi → Im di → 0 of Im di for each integer i ≥ 1. Since Im di ∈ ⊥(projA), we 
have an exact sequence 0 → (Im di)∗ → (Pi)∗ → (Pi−1)∗ → (Pi−2)∗ → · · · . Therefore P• is totally acyclic.

The last assertion follows from Lemma 2.5 and [4, Proposition 5.1]. �
Let B be an extension closed subcategory of an abelian category A. Then B has an induced structure of 

an exact category if we define a short exact sequence in B as a short exact sequence in A whose terms are in 
B. We say that an object Z in B is relative-projective if any short exact sequence 0 → X → Y → Z → 0 in 
B splits. Dually, we define relative-injective objects. We say that B has enough projectives if for any X ∈ B, 
there exists a short exact sequence 0 → Z → P → X → 0 in B such that P is relative-projective. We say 
that B has enough injectives if the dual condition is satisfied. An extension closed subcategory B of A is said 
to be Frobenius if B has enough projectives, enough injectives and the relative-projective objects coincide 
with the relative-injective objects.

The following observation is immediate (cf. [11]). Here, for the convenience of the reader, we give a proof.

Proposition 2.8. Let A be an additive category. Then GPA is a Frobenius category, where the relative-
projective objects are precisely the finitely generated projective A-modules.

Proof. By Lemma 2.7 (b), GPA is extension closed in ModA. Clearly, the finitely generated projective 
A-modules are contained in GPA and are relative-projective in GPA. Conversely, let M be a relative-
projective A-module in GPA and P• := (Pi, di : Pi → Pi+1)i∈Z be a totally acyclic complex of finitely 
generated projective A-modules such that Im d0 is isomorphic to M . Since M is relative-projective, the 
exact sequence 0 → Im(d−1) → P0 → M → 0 splits. Therefore the relative-projective objects in GPA are 
precisely the finitely generated projective A-modules. This implies that GPA has enough projectives.

Since the duality (−)∗ : GPA → GP(Aop) induces a duality between projA and proj(Aop), the relative-
injective objects in GPA are precisely the finitely generated projective A-modules and GPA has enough 
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injectives. Therefore GPA is a Frobenius category such that the relative-projective objects are precisely the 
finitely generated projective A-modules. �
2.3. Dualizing k-varieties and Serre dualities

In this subsection, we recall the definition of dualizing k-varieties. Let A be an additive category. We call 
an object of mod1A a finitely presented A-module.

A morphism X → Y in A is a weak kernel of a morphism Y → Z if the induced sequence A(−, X) →
A(−, Y ) → A(−, Z) is exact in ModA. We say that A has weak kernels if each morphism in A has a weak 
kernel. The following lemma says when an additive category has weak kernels.

Lemma 2.9. Let A be an additive category. The following statements are equivalent.

(i) A has weak kernels.
(ii) mod1A is an abelian subcategory of ModA.
(iii) mod1A = modA holds.

Proof. It is well known that (i) implies (ii), see [2, Proposition 2.1] for instance. Clearly, (ii) implies (i). 
The statements (i) and (iii) are equivalent by [12, Proposition 2.7]. �

Let A be an additive category and X ∈ A. A morphism e : X → X in A is called an idempotent if e2 = e. 
We call A idempotent complete if each idempotent of A has a kernel.

Let k be a field. A k-linear category A is a category such that A(X, Y ) is equipped with a structure of 
k-module and the composition of morphisms of A is k-bilinear. A contravariant functor F : A → B between 
k-linear categories is called k-functor if FX,Y : A(X, Y ) → B(FY, FX) is k-linear for any X, Y ∈ A. Let A
be a k-linear additive category and M be an A-module. For each X ∈ A, since EndA(X) acts on M(X)
and k acts on EndA(X), M(X) is a k-module. By this action, we regard any A-module as a contravariant 
k-functor from A to Mod(k), where Mod(k) is the category of k-modules.

Let A be a k-linear additive category. We call A Hom-finite if A(X, Y ) is finitely generated over k for 
any X, Y ∈ A. We recall one proposition about the Krull-Schmidt property of k-linear additive categories 
(see [19] for details).

Proposition 2.10. Let A be a k-linear, Hom-finite additive category. Then the following properties are equiv-
alent.

(i) A is idempotent complete.
(ii) The endomorphism algebra of each indecomposable object in A is local.
(iii) A is Krull-Schmidt, that is, each object of A is a finite direct sum of objects whose endomorphism 

algebras are local.

Moreover the decomposition of (iii) is unique up to isomorphism.

Proposition 2.11. Let A be a k-linear, Hom-finite additive category. Then modA is Krull-Schmidt. In par-
ticular, each object of modA has a minimal projective resolution.

Proof. By Lemma 2.5, modA is closed under direct summands in ModA. Thus modA is idempotent complete. 
Since A is Hom-finite, modA is also Hom-finite. By Proposition 2.10, modA is Krull-Schmidt. �
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We recall the definition of dualizing k-varieties. We denote by D = Homk(−, k) the standard k-dual 
of k-modules. Let A be a k-linear additive category. We have contravariant exact functors D : ModA →
Mod(Aop) and D : Mod(Aop) → ModA given by (DM)(X) := D(M(X)). We use the same letter D for the 
standard k-dual of k-modules and the contravariant functors between ModA and Mod(Aop).

Definition 2.12. A dualizing k-variety is a k-linear, Hom-finite, idempotent complete additive category A
such that the functor D : ModA → Mod(Aop) induces a duality between mod1A and mod1(Aop).

The following are typical examples of dualizing k-varieties.

Example 2.13.

(a) If A is a dualizing k-variety, then Aop is a dualizing k-variety.
(b) Let A be a finite dimensional k-algebra and modA be the category of finitely generated A-modules. Let 

projA be the full subcategory of modA consisting of all finitely generated projective A-modules. Then 
modA and projA are dualizing k-varieties by [3, Propositions 2.5, 2.6].

We state some properties of dualizing k-varieties.

Lemma 2.14. Let A be a dualizing k-variety, then we have the following properties.

(a) A and Aop have weak kernels.
(b) modA is a dualizing k-variety.
(c) Each object in modA has a projective cover and an injective hull.

Proof. The statement (a) follows from [3, Theorem 2.4]. By Lemma 2.9, we have mod1A = modA. Then (b) 
follows from [3, Proposition 2.6]. By the definition of dualizing k-varieties, we have the duality D between 
modA and mod(Aop). Thus by Proposition 2.11, (c) holds. �

Let A be a k-linear, Hom-finite additive category. A Serre functor on A is a k-linear auto-equivalence 
S : A → A together with k-linear isomorphisms

ηX,Y : A(X,Y ) � D
(
A
(
Y,S(X)

))

for any X, Y ∈ A which are functorial in X and Y . We denote by S−1 a quasi-inverse of S. It is easy to see 
that if A has a Serre functor S, then S−1 is a Serre functor on Aop.

If A has a Serre functor S, then (−)∗ is described as in the following lemma. Since S is an auto-equivalence, 
we have an equivalence ModA → ModA given by M �→ M◦S−1. By composing with the functor D : ModA →
Mod(Aop), we have a contravariant functor ModA → Mod(Aop) given by M �→ D(M ◦ S−1). We denote by 
ModfgA the subcategory of ModA consisting of A-modules M such that M(X) is finitely generated over k
for any X ∈ A. Note that D induces a duality ModfgA → Modfg(Aop) and that the categories mod0A and 
GPA are contained in ModfgA.

Lemma 2.15. Let A be a k-linear, Hom-finite additive category with a Serre functor S. Then the following 
statements hold.

(a) We have an isomorphism of functors (−)∗ � D(− ◦S−1) : ModfgA → Modfg(Aop), and the functor (−)∗
is a duality.

(b) Let M ∈ ModA. The following statements are equivalent.



844 Y. Kimura / Journal of Pure and Applied Algebra 224 (2020) 836–859
(i) M ∈ GPA.
(ii) M ∈ modA and M∗ ∈ mod(Aop).

Proof. (a) Let M ∈ ModfgA and X ∈ A. We have the following isomorphisms

(M)∗(X) = (ModA)(M,A(−, X))

� (ModAop)(DA(−, X),DM)

� (ModAop)(A(S−1(X),−),DM)

� D(M ◦ S−1)(X),

which are functorial in X, where the last isomorphism is induced by Yoneda’s lemma. Thus we have an 
isomorphism of functors (−)∗ � D(− ◦ S−1). This functor is a duality, since D is a duality and S is an 
equivalence.

(b) Assume that M ∈ GPA. By Lemma 2.7 (a), we have M∗ ∈ GP(Aop). In general GPA ⊂ modA holds, 
thus (i) implies (ii). Assume that (ii) holds. There exists an exact sequence · · · → Q2 → Q1 → M∗ → 0, 
where Qi ∈ proj(Aop). By (a), (−)∗ is an exact functor. Therefore we have an exact sequence

· · · → P2 → P1 → P0
d−→ Q∗

1 → Q∗
2 → · · · ,

where Pi, Q∗
i ∈ projA and Im d � M . This exact sequence is totally acyclic, since (−)∗ is exact. We have 

M ∈ GPA. �
Later we use the following characterization of dualizing k-varieties with Serre functors.

Proposition 2.16. Let A be a k-linear, Hom-finite, idempotent complete additive category. Then the following 
statements are equivalent.

(i) A is a dualizing k-variety and has a Serre functor.
(ii) A and Aop have weak kernels and A has a Serre functor.
(iii) GPA = mod1A, GP(Aop) = mod1(Aop) hold and DA(X, −) ∈ mod1A, DA(−, X) ∈ mod1(Aop) hold 

for any X ∈ A.

Proof. By Lemma 2.14, (i) implies (ii). We show that (ii) implies (i). We show that, for any M ∈ mod1A, DM

is in mod1(Aop). There exists an exact sequence P1 → P0 → M → 0 for some P1, P0 ∈ projA. By the functor 
D : ModA → Mod(Aop), we have an exact sequence 0 → DM → DP0 → DP1 in ModA. Since A has a Serre 
functor, we have DP1, DP0 ∈ proj(Aop). Since Aop has weak kernels, by Lemma 2.9, DM is in mod1(Aop). 
By the dual argument, for any N ∈ mod1(Aop), we have DN ∈ mod1A. Thus D : mod1A → mod1(Aop) is 
a duality.

We show that (i) implies (iii). Since A is a dualizing k-variety, DA(X, −) ∈ mod1A, DA(−, X) ∈
mod1(Aop) hold for any X ∈ A. By Lemma 2.9, we have modA = mod1A and mod(Aop) = mod1(Aop). In 
general GPA ⊂ modA holds. Let M ∈ modA. We show that M ∈ GPA. Since A is a dualizing k-variety, 
DM ∈ mod(Aop) holds. By Lemma 2.15 (a), M∗ ∈ mod(Aop) holds. Thus by Lemma 2.15 (b), M ∈ GPA
holds.

We show that (iii) implies (ii). In general, GPA ⊂ modA ⊂ mod1A holds. Therefore by Lemma 2.9, 
A and Aop have weak kernels. Consider the functor D ◦ (−)∗ : ModA → ModA. This functor induces an 
equivalence projA ∼−→ projA. In fact, if M ∈ projA, then M∗ ∈ proj(Aop). By the assumption, we have 
D(M∗) ∈ mod1A = GPA. Since D : Modfg(Aop) → ModfgA is a duality, D(M∗) is an injective object 
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of ModfgA. In particular, D(M∗) is a relative-injective object of GPA. Since GPA is Frobenius, D(M∗) is 
an object of projA. Thus we have a functor D ◦ (−)∗ : projA → projA. This is an equivalence, since its 
quasi-inverse is given by (−)∗ ◦ D. Since A is idempotent complete, the Yoneda embedding A → projA, 
X �→ A(−, X) is an equivalence. Thus there exists an equivalence S : A → A such that the following 
diagram is commutative up to isomorphism of functors:

projA
D◦(−)∗

projA

A S

	

A.

	

For X, Y ∈ A, we have the following isomorphisms which are functorial in X, Y :

A(Y,SX) � D(A(−, X)∗)(Y )

� D(ModA(A(−, X),A(−, Y )))

� DA(X,Y ).

This means that S is a Serre functor on A. �
2.4. Some observations on triangulated categories

In this subsection, we state some results on triangulated categories which we use later. Let A be an 
additive category and B be a subcategory of A. For two objects X, Y ∈ A, we denote by AB(X, Y ) the 
subspace of A(X, Y ) consisting of all morphisms which factor through an object of B. We denote by A/[B]
the category defined as follows: the objects of A/[B] are the same as A and the morphism space is defined 
by

(A/[B])(X,Y ) := A(X,Y )/AB(X,Y ),

for X, Y ∈ A. We denote by K(A) the homotopy category of complexes in A and Kb(A) (resp. K−(A)) the 
full subcategory of K(A) consisting of bounded complexes (resp. right bounded complexes).

Let F be a Frobenius category, P the full subcategory of F consisting of the projective objects in F and 
F := F/[P]. By Happel [13], it is known that F is a triangulated category. Assume that P is idempotent 
complete. We denote by K−,b(P) the full subcategory of K(P) consisting of complexes X = (Xi, di : Xi →
Xi+1) satisfying the following conditions.

(1) There exists nX ∈ Z such that Xi = 0 for any i > nX .
(2) There exist mX ∈ Z and exact sequences 0 → Y i−1 ai−1

−−−→ Xi bi−→ Y i → 0 in F for any i ≤ mX such 
that di = aibi for any i < mX .

We identify the category F with the full subcategory of K−,b(P) consisting of X such that there exist 
integers nX and mX satisfying (1), (2), respectively, and nX ≤ 0 ≤ mX . Then we have the following 
analogy of the well known equivalence due to [9,16,26].

Theorem 2.17. [15, Corollary 2.2] Let F be a Frobenius category and P the full subcategory of F consisting 
of the projective objects. Assume that P is idempotent complete. Then the composite F → K−,b(P) →
K−,b(P)/Kb(P) induces a triangle equivalence F ∼−→ K−,b(P)/Kb(P).
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A complex X = (Xi, di : Xi → Xi+1) of K(F) is said to be acyclic if there exist exact sequences 
0 → Y i−1 ai−1

−−−→ Xi bi−→ Y i → 0 in F for any i ∈ Z such that di = aibi for any i ∈ Z. We denote by Ka(F)
the full subcategory of K(F) consisting of acyclic complexes. We use the following proposition in Section 3. 
We refer [23] for stable t-structures.

Proposition 2.18. [10, Theorem 12.7] Let F be a Frobenius category and P the full subcategory of F con-
sisting of the projective objects. Assume that P is idempotent complete. Then we have a stable t-structure 
(K−(P), Ka(F) ∩ K−(F)) on K−(F).

Let U be a triangulated category and X be a full subcategory of U . We call X a thick subcategory 
of U if X is a triangulated subcategory of U and closed under direct summands. We denote by thickU X
the smallest thick subcategory of U which contains X . Whenever if there is no danger of confusion, let 
thickU X = thickX .

Lemma 2.19. [18, Appendix] Let T , U be triangulated categories and F : U → T a triangle functor. Let X
be a full subcategory of U . Then the following holds.

• Assume that the map

FM,N [n] : U(M,N) → T (FM,FN [n])

is an isomorphism for any M, N ∈ X and any n ∈ Z. Then F : thickX → T is fully faithful.
• If moreover U is idempotent complete, thickX = U and thick(Im(F )) = T , then F is an equivalence.

3. Repetitive categories

Throughout this section, we assume that A is a skeletally small category.

3.1. Repetitive categories

We recall the definition of repetitive categories of additive categories. The aim of this subsection is to 
show Theorem 3.7.

Definition 3.1. Let A be a k-linear additive category. The repetitive category RA is the k-linear additive 
category generated by the following category: the class of objects is {(X, i) | X ∈ A, i ∈ Z} and the 
morphism space is given by

RA
(
(X, i), (Y, j)

)
=

⎧⎪⎪⎨
⎪⎪⎩
A(X,Y ) i = j,

DA(Y,X) j = i + 1,
0 else.

For f ∈ RA
(
(X, i), (Y, j)

)
and g ∈ RA

(
(Y, j), (Z, k)

)
, the composition is given by

g ◦ f =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g ◦ f i = j = k,(
DA(Z, f)

)
(g) i = j = k − 1,(

DA(g,X)
)
(f) i + 1 = j = k,

0 else.
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We describe fundamental properties of repetitive categories of Hom-finite categories.

Lemma 3.2. Let A be a k-linear, Hom-finite additive category. The following statements hold.

(a) RA is Hom-finite.
(b) RA has a Serre functor S which is defined by S(X, i) := (X, i + 1).
(c) If A is idempotent complete, then so is RA.

Proof. (a) (b) These are clear by the definition.
(c) By the definition, an object of RA is indecomposable if and only if it is isomorphic to an object (X, i), 

where X is an indecomposable object of A and i is some integer. Let X be an indecomposable object of 
A and i be an integer. Since A is idempotent complete and Proposition 2.10, EndRA(X, i) = EndA(X) is 
local. Therefore again by Proposition 2.10, RA is idempotent complete. �

We see a relation between the categories modA and modRA and consequently, we show Theorem 3.7. Let 
A be a k-linear additive category and i ∈ Z. Define the following full subcategory of RA:

Ai := add{ (X, i) ∈ RA | X ∈ A}.

The inclusion functor Ai → RA induces an exact functor

ρi : ModRA → ModAi.

Since the functor A → Ai defined by X �→ (X, i) is an equivalence, whenever there is no danger of confusion, 
we denote an object (X, i) of Ai by X for simplicity.

Since we have a full dense functor RA → Ai given by (X, j) �→ X if j = i and (X, j) �→ 0 if otherwise, we 
have a fully faithful functor from ModAi to ModRA. Therefore we identify ModAi with the full subcategory 
of ModRA consisting of RA-modules M such that M(X, j) = 0 for any j �= i and any X ∈ A.

For an object (X, i) ∈ Aop
i , we have Aop

i (−, (X, i)) ∈ Mod(Aop
i ) and D(Aop

i (−, (X, i))) =
D(Ai((X, i), −)) ∈ ModAi. For simplicity, let Ai(−, X) := Ai(−, (X, i)) and DAi(X, −) := D(Ai((X, i), −)). 
We regard these functors as objects in ModRA by the fully faithful functor from ModAi to ModRA as above.

Lemma 3.3. Let A be an additive category and i, j ∈ Z.

(a) We have ρj |ModAi
= idModAi

if j = i and ρj |ModAi
= 0 if otherwise.

(b) For any X ∈ A, there exists a canonical exact sequence

0 → DAi−1(X,−) β−→ RA(−, (X, i)) α−→ Ai(−, X) → 0 (3.1)

in ModRA, where α and β are defined in the proof. In particular, we have ρj(P ) ∈ add{Aj(−, X),
DAj(X, −) | X ∈ A} for any P ∈ proj RA and j ∈ Z.

(c) Each finitely generated Ai-module is a finitely generated RA-module.

Proof. (a) The assertions follow from the definition of ρj .
(b) We construct morphisms α, β in ModRA. For a generating object (Y, j) of RA, define

α(Y,j) :=
{

idA(Y,X) j = i,

0 else,
β(Y,j) :=

{
idDA(X,Y ) j + 1 = i,

0 else,
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and extend α and β on RA additively. It is easy to show that α and β are actually morphisms in ModRA. 
By definitions of α and β, for an object (Y, j) of RA, we have the following exact sequence

0 → DAi−1(X, (Y, j))
β(Y,j)−−−−→ RA((Y, j), (X, i))

α(Y,j)−−−−→ Ai((Y, j), X) → 0

in Mod(k). Thus we have an exact sequence (3.1). Since ρj is exact, by applying ρj to the exact sequence 
(3.1) and by using (a), we have the assertion.

(c) This follows from (b) since α is an epimorphism. �
By the following lemma, we construct a filtration on any module over a repetitive category. For M ∈

ModRA, let SuppM := { i ∈ Z | ρi(M) �= 0 }.

Lemma 3.4. Let M ∈ ModRA and i ∈ Z.

(a) If ρi−1(M) = 0, then there exists a short exact sequence

0 → ρi(M) α−→ M → N → 0

in ModRA such that ρi(N) = 0 and ρj(N) = ρj(M) for any j > i.
(b) Assume that SuppM is a non-empty finite set and put m := max SuppM and n := min SuppM . Then 

there exists a sequence of subobjects of M :

0 = Mn−1 ⊂ Mn ⊂ · · · ⊂ Mm−1 ⊂ Mm = M

such that Mi/Mi−1 � ρi(M) for any i = n, n + 1, . . . , m.

Proof. (a) We construct a monomorphism α : ρi(M) → M in ModRA. For a generating object (X, j) of 
RA, define

α(X,j) :=
{

idM(X,j) j = i,

0 else,

and extend this on RA additively. Since ρi−1(M) = 0, α is a morphism of ModRA. By the definition, α
is a monomorphism. Then we have an exact sequence 0 → ρi(M) → M → N → 0 in ModRA, where 
N := Cok(α). By Lemma 3.3, we have ρj(ρi(M)) = ρi(M) if j = i and ρj(ρi(M)) = 0 if else. Therefore by 
applying the functor ρj to this exact sequence, we have the assertion.

(b) This follows from (a). �
By the following two lemmas, we see that the functors ModAi → ModRA and ρi : ModRA → ModAi

restrict to functors between modAi and modRA under certain assumptions. For simplicity, we use the 
notation mod−1A := ModA, mod∞A := modA and ∞ − 1 := ∞.

Lemma 3.5. Let A be a k-linear, Hom-finite additive category and n ∈ Z≥0∪{∞}. Assume that DA(X, −) ∈
modn−1A holds for any X ∈ A. Then the inclusion functor ModAi → ModRA restricts to a functor 
modnAi → modnRA for any i ∈ Z.

Proof. Let n ∈ Z≥0. It is sufficient to show that projAi ⊂ modnRA for any i ∈ Z. In fact, any M ∈ modnAi

has an exact sequence Pn → · · · → P0 → M → 0 with Pi ∈ projAi and hence M belongs to modnRA by 
Lemma 2.4 (c).
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We show projAi ⊂ modnRA for any i ∈ Z by an induction on n. If n = 0, then by Lemma 3.3 (c), we 
have the assertion. Let n > 0, X ∈ A and i ∈ Z. By Lemma 3.3 (b), there exists an exact sequence

0 → DAi−1(X,−) → RA(−, (X, i)) → Ai(−, X) → 0.

By the explanation in the first part of this proof, the assumption of this lemma and the inductive hypothesis, 
DAi−1(X, −) ∈ modn−1RA holds. Therefore we have Ai(−, X) ∈ modnRA by Lemma 2.4 (b).

By an argument similar to the above, the assertion holds when n = ∞. �
Lemma 3.6. Let A be a k-linear, Hom-finite additive category, n ∈ Z≥0 ∪ {∞}. Assume that DA(X, −) ∈
modnA holds for any X ∈ A. Then the functor ρi : ModRA → ModAi restricts to a functor modnRA →
modnAi for any i ∈ Z.

Proof. Let n ∈ Z≥0 and M ∈ modnRA. We have an exact sequence Pn → · · · → P1 → P0 → M → 0 in 
ModRA, where Pj ∈ proj RA for each j ≥ 0. Since ρi is exact, we have an exact sequence ρi(Pn) → · · · →
ρi(P1) → ρi(P0) → ρi(M) → 0 in ModAi. By the assumption and Lemma 3.3 (b), ρi(Pj) ∈ modnAi holds 
for any j ≥ 0. Therefore ρi(M) ∈ modnAi holds by Lemma 2.4 (c).

By an argument similar to the above, the assertion holds when n = ∞. �
Note that in general modRA = mod1RA does not hold for a k-linear additive category A. This is the 

case where A is a dualizing k-variety by Theorem 3.7 below and Lemma 2.9. Note that there exists an 
isomorphism (RA)op � R(Aop) given by (X, i) �→ (X, −i).

Theorem 3.7. Let A be a dualizing k-variety. Then the following statements hold.

(a) RA and (RA)op have weak kernels.
(b) RA is a dualizing k-variety.

Proof. Note that since A is a dualizing k-variety, DA(X, −) ∈ mod1A holds for any X ∈ A. By Lemmas 2.9
and 2.14, mod1A = modA holds and this is an abelian subcategory of ModA.

(a) Let X, Y ∈ RA and f : RA(−, X) → RA(−, Y) be a morphism of modRA. We show that K :=
Ker(f) is a finitely generated RA-module. For any i ∈ Z, we have an exact sequence 0 → ρi(K) →
ρi(RA(−, X)) → ρi(RA(−, Y)) in ModAi. By Lemma 3.6, we have ρi(RA(−, X)), ρi(RA(−, Y)) ∈ modAi. 
Therefore ρi(K) ∈ modAi for any i ∈ Z, since mod1A = modA is an abelian subcategory of ModA. By 
Lemma 3.5, ρi(K) ∈ modRA for any i ∈ Z. Since K is a submodule of RA(−, X), SuppK is a finite set. Thus 
by Lemma 3.4 (b), K has a finite filtration with subquotients ρi(K) ∈ modRA and we have K ∈ modRA
by Lemma 2.5 (b). In particular, K is finitely generated and RA has weak kernels. Since (RA)op � R(Aop)
holds and Aop is a dualizing k-variety, (RA)op has weak kernels.

(b) By the definition of dualizing k-varieties, A is Hom-finite and idempotent complete. By Lemma 3.2, 
RA is Hom-finite and idempotent complete with a Serre functor. Therefore by Proposition 2.16, RA is a 
dualizing k-variety. �
3.2. Tilting subcategories

The aim of this subsection is to show Theorem 3.10. Before stating the main theorem, we need the 
following definition.

Let A be a k-linear, Hom-finite additive category. We denote by

ρ : ModRA → ModA
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a functor defined as ρ(M) :=
⊕

i∈Z ρi(M) for any M ∈ ModRA, where we regard an Ai-module ρi(M) as 
an A-module by the equivalence ModAi � ModA. Note that ρ is an exact functor. We denote by GP(RA, A)
the full subcategory of GP(RA) consisting of all objects M such that the projective dimension of ρ(M) over 
A is finite. We consider the following Gorenstein condition on A:

(G): the projective dimension of DA(X, −) over A is finite for any X ∈ A.

Proposition 3.8. Let A be a k-linear, Hom-finite additive category. Then A satisfies (G) if and only if 
proj RA ⊂ GP(RA, A) holds. In this case, the following statements hold.

(a) GP(RA, A) is a Frobenius category such that the projective objects are precisely the objects of projRA.
(b) The inclusion functor GP(RA, A) → GP(RA) induces a fully faithful triangle functor GP(RA, A) →

GP(RA).

Proof. The first assertion follows from Lemma 3.3 (b). Assume that A satisfies (G).
(a) By the definition and since ρ is exact, GP(RA, A) is an extension closed subcategory of ModRA. 

Clearly, any object of proj RA is relative projective of GP(RA, A). Let Q be a relative projective object 
of GP(RA, A). There exists an exact sequence 0 → M → P → Q → 0 in GP(RA) with P ∈ proj RA
and M ∈ GP(RA). We have M ∈ GP(RA, A) and therefore this sequence splits. Consequently, the relative 
projective objects of GP(RA, A) are the objects of proj RA and GP(RA, A) has enough projective objects. By 
Proposition 2.8, proj RA are relative injective objects of GP(RA), and so of GP(RA, A). By Lemma 2.15 (a), 
the duality (−)∗ : GP(RA) → GP((RA)op) sends proj RA to proj((RA)op). Therefore, by a similar argument 
as above, any relative injective object belongs to proj RA. Thus, GP(RA, A) is a Frobenius category.

(b) This follows from (a). �
We regard GP(RA, A) as a thick subcategory of GP(RA) by Proposition 3.8 (b) if A satisfies (G). Let A be 
a k-linear, Hom-finite additive category. We consider the following condition on A:

(IFP): DA(X, −) ∈ modA holds for any X ∈ A,

where (IFP) means that injective A-modules have projective resolutions by finitely generated projective 
A-modules. Note that if A is a dualizing k-variety, then A satisfies (IFP) by Lemmas 2.9 and 2.14. We 
denote by M the full subcategory of ModRA given by

M := add{A0(−, X) | X ∈ A}.

We recall the definition of tilting subcategories of a triangulated category.

Definition 3.9. Let T be a triangulated category. A full subcategory N of T is called a tilting subcategory
of T if T (N , N [i]) = 0 for any i �= 0 and thickN = T .

We establish the following result in the rest of this subsection.

Theorem 3.10. Let A be a k-linear, Hom-finite additive category and assume that A and Aop satisfy (IFP). 
Then the following hold.

(a) If A and Aop satisfy (G), then M ⊂ GP(RA, A) holds and M is a tilting subcategory of GP(RA, A).
(b) If each object of modA and mod(Aop) has finite projective dimension, then M ⊂ GP(RA) holds and M

gives a tilting subcategory of GP(RA).
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In the case where A is a dualizing k-variety, we have the following corollary.

Corollary 3.11. Let A be a dualizing k-variety. If each object of modA and mod(Aop) has finite projective 
dimension, then M is a tilting subcategory of modRA.

Before starting the proof of Theorem 3.10, we prove two lemmas. Let A be a k-linear additive category 
and i ∈ Z. Define the following full subcategories of RA:

A<i :=
∨
j<i

Aj , A≥i :=
∨
j≥i

Aj .

For M ∈ ModRA and i ∈ Z, let ρ<i(M) :=
⊕

j<i ρj(M) and ρ≥i(M) :=
⊕

j≥i ρj(M).

Lemma 3.12. Let A be a k-linear, Hom-finite additive category. Let M and N be finitely generated 
RA-modules and i ∈ Z. Assume that ρ≥i(M) = 0 and ρ<i(N) = 0.

(a) There exist epimorphisms

RA(−,X) → M, RA(−,Y) → N,

for some X ∈ A<i and Y ∈ A≥i.
(b) We have (ModRA)(M, N) = 0 and (ModRA)(N, M) = 0.
(c) Assume M ∈ modRA. Let

· · · → P2
f2−−→ P1

f1−−→ P0
f0−−→ M → 0 (3.2)

be a minimal projective resolution of M in modRA. Then we have ρ≥i(Ker fl) = 0 for l ≥ 0. Moreover 
by applying the functor ρi−1, we have a minimal projective resolution of ρi−1(M) in modAi−1.

Proof. (a) Since M and N are finitely generated, there exist epimorphisms RA(−, X) → M and RA(−, Y) →
N , where X and Y are in RA. Let W be an object of A≥i. By Yoneda’s lemma and the assumption, we have 
(ModRA)(RA(−, W), M) � M(W) = 0. Therefore we can replace X with an object of A<i. Similarly, we 
can replace Y with an object of A≥i.

(b) By (a), there exists an epimorphism RA(−, X) → M , where X ∈ A<i. We have a monomor-
phism (ModRA)(M, N) → (ModRA)(RA(−, X), N). Since (ModRA)(RA(−, X), N) � N(X) = 0, 
(ModRA)(M, N) = 0 holds. Similarly, by applying (ModRA)(−, M) to an epimorphism RA(−, Y) → N , we 
have (ModRA)(N, M) = 0.

(c) By (a), there exists X0 ∈ A<i such that P0 is a direct summand of RA(−, X0). We have 
ρ≥i(RA(−, X0)) = 0. Therefore the submodule Ker f0 of RA(−, X0) satisfies ρ≥i(Ker f0) = 0. By using 
this argument inductively, we have that there exist Xl ∈ A<i such that Pl is a direct summand of RA(−, Xl)
for any l ≥ 0. Therefore we have ρ≥i(Ker fl) = 0 for l ≥ 0.

For any l ≥ 0, by Lemma 3.3, ρi−1(Pl) is a direct sum of Ai−1(−, X) for some X ∈ A and zero objects. 
Therefore each ρi−1(Pl) is a finitely generated projective Ai−1-module. Thus, by applying the functor ρi−1
to the resolution (3.2), we have a projective resolution · · · → ρi−1(P1) → ρi−1(P0) → ρi−1(M) → 0 of 
ρi−1(M) in modAi−1, and this is minimal, since the resolution (3.2) is minimal. �

We explain when GP(RA) contains all representable modules Ai(−, X). Note that there exists an iso-
morphism s : R(Aop) ∼−→ (RA)op given by (X, i) �→ (X, −i). Thus we have a duality
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s∗D : ModfgRA D−→ Modfg((RA)op) s∗:=(−)◦s−−−−−−−→ ModfgR(Aop).

Under this duality s∗D, the full subcategory modAi of modRA goes to the full subcategory mod(Aop
−i) of 

modR(Aop). Since s is an isomorphism, s∗ induces equivalences between proj((RA)op) and proj(R(Aop)), 
mod((RA)op) and mod(R(Aop)), and GP((RA)op) and GP(R(Aop)), respectively.

Lemma 3.13. Let A be a k-linear, Hom-finite additive category.

(a) The following statements are equivalent.
(i) A and Aop satisfy (IFP).
(ii) Ai(−, X) ∈ GP(RA) and Ai(X, −) ∈ GP(R(Aop)) hold for any X ∈ A and i ∈ Z.
(iii) DAi(X, −) ∈ GP(RA) and DAi(−, X) ∈ GP(R(Aop)) hold for any X ∈ A and i ∈ Z.

(b) If A and Aop satisfy (IFP), then ρi(M) ∈ GP(RA) holds for any M ∈ GP(RA) and i ∈ Z.

Proof. (a) By Lemma 3.2, RA has a Serre functor S. Thus by Lemma 2.15, we have an isomorphism of 
dualities s∗(−)∗ � s∗D(− ◦ S−1) : ModfgRA → ModfgR(Aop). We have

s∗(Ai(−, X))∗ � D(Aop)−i−1(X,−) = DA−i−1(−, X) (3.3)

for any X ∈ A and i ∈ Z. Therefore, by Lemma 2.7 (a) and since s∗ induces an equivalence between 
GP((RA)op) and GP(R(Aop)), Ai(−, X) ∈ GP(GA) if and only if DA−i−1(−, X) ∈ GP(R(Aop)). Similarly, 
DAi(X, −) ∈ GP(RA) if and only if A−i+1(X, −) ∈ GP(R(Aop)). Namely, (ii) and (iii) are equivalent.

We show that (i) implies (ii). Let X ∈ A. By Lemma 3.5, Ai(−, X) ∈ modRA holds. We have 
(Ai(−, X))∗ ∈ mod(RA)op, since Aop satisfies (IFP), together with the equality (3.3) and Lemma 3.5. 
Therefore by Lemma 2.15 (b), we have Ai(−, X) ∈ GP(RA). Dually, we have Ai(X, −) ∈ GP(R(Aop)).

We show that (ii) implies (i). Let X ∈ A. Take a minimal projective resolution of Ai(−, X) in modRA:

· · · → Q2 → Q1
d1−−→ RA(−, (X, i)) → Ai(−, X) → 0.

By Lemma 3.3 (b), we have Im d1 = DAi−1(X, −). By Lemma 3.12 (c), applying ρi−1, we have 
DAi−1(X, −) ∈ modAi−1. This means DA(X, −) ∈ modA. Dually, we have DA(−, X) ∈ mod(Aop).

(b) By Lemma 3.3 (b), we have ρi(P ) ∈ add{Ai(−, X), DAi(X, −) | X ∈ A} for any P ∈ proj RA. In 
particular, we have ρi(P ) ∈ modAi for any i ∈ Z and any P ∈ proj RA. Therefore s∗(ρi(P ))∗ ∈ mod(Aop

−i−1)
holds by the equality (3.3) and the assumption. Let M ∈ GP(RA) and P• = (Pj , dj : Pj → Pj+1) be 
a totally acyclic complex such that Im d0 = M , where Pj ∈ proj RA. By applying ρi, we have an exact 
sequence ρi(P•) = (ρi(Pj), ρi(dj) : ρi(Pj) → ρi(Pj+1)) such that Im ρi(d0) = ρi(M). We have an exact 
sequence · · · → ρi(P−1) → ρi(P0) → ρi(M) → 0. By Lemmas 2.4 (d) and 3.5, ρi(M) ∈ modRA holds. By 
applying the functor (−)∗ to 0 → ρi(M) → ρi(P1) → ρi(P2) → · · · , and using Lemmas 2.4 (d) and 3.5
to the resulting exact sequence, we have (ρi(M))∗ ∈ mod(RA)op. Therefore we have ρi(M) ∈ GP(RA) by 
Lemma 2.15 (b). �

By Lemma 3.13, if A and Aop satisfy (IFP), then M ⊂ GP(RA) holds. We also denote by M the 
subcategory of GP(RA) consisting of direct summands of a finite direct sum of objects A0(−, Xi) for Xi ∈ A. 
Then we show Theorem 3.10. We divide the proof into two propositions.

Proposition 3.14. Let A be a k-linear, Hom-finite additive category and assume that A and Aop satisfy 
(IFP). Let T := GP(RA). Then we have T (M, M[i]) = 0 for any i �= 0.
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Proof. By Lemma 3.13, since A and Aop satisfy (IFP), we have A0(−, X) ∈ GP(RA) for any X ∈ A. Let

· · · → P2
f2−−→ P1

f1−−→ P0
f0−−→ A0(−, X) → 0

be a minimal projective resolution in modRA. Put Ki := Ker(fi−1) for i ≥ 1. By Lemmas 3.3 (b) and 
3.12 (c), we have ρ≥0(Ki) = 0 for i ≥ 1. Let Y ∈ A. Since ρ<0(A0(−, Y )) = 0 and Lemma 3.12 (b), we have

(ModRA)(Ki,A0(−, Y )) = 0, (ModRA)(A0(−, Y ),Ki) = 0,

for any i ≥ 1. Therefore we have

T (A0(−, Y ),A0(−, X)[−i]) = T (A0(−, Y ),Ki) = 0,

T (A0(−, X),A0(−, Y )[i]) = T (Ki,A0(−, Y )) = 0,

for any i ≥ 1. �
Proposition 3.15. Let A be a k-linear, Hom-finite additive category and assume that A and Aop satisfy 
(IFP). Let T := GP(RA). If A and Aop satisfy (G), then we have thickT M = GP(RA, A).

Proof. Since A and Aop satisfy (IFP), we have M ⊂ GP(RA, A) by Lemma 3.13. Therefore we have 
thickM := thickT M ⊂ GP(RA, A).

Let i ∈ Z and N ∈ modAi. Assume that N has finite projective dimension over Ai. By Lemma 3.5, we 
have an inclusion modAi → modRA which is exact. Thus we obtain a finite resolution of N by objects that 
are direct summands of objects of the form Ai(−, X), (X ∈ A) in modRA. Therefore if N is an object of 
GP(RA, A), then N is in thickM if Ai(−, X) is in thickM for any X ∈ A.

Let M ∈ GP(RA, A). Since M is a factor module of a finitely generated projective RA-module, SuppM
is a finite set. Thus by Lemma 3.4 (b), M has a finite filtration by ρi(M) for i = n, n + 1, . . . , m, where 
n = min SuppM and m = max SuppM . By Lemma 3.13 (b) and since ρ(M) has finite projective dimension 
over A, ρi(M) ∈ GP(RA, A) for any i ∈ Z. Therefore M is in thickM if Ai(−, X) is in thickM for any 
X ∈ A and i = n, n + 1, . . . , m.

We show that Ai(−, X) is in thickM for any X ∈ A and i ∈ Z by an induction on i. We first show 
Ai(−, X) ∈ thickM for i ≥ 0. Since A0(−, X) ∈ M, we have A0(−, X) ∈ thickM. Assume that Aj(−, X) ∈
thickM for 0 ≤ j ≤ i − 1. By Lemma 3.3, we have an exact sequence in GP(RA)

0 → DAi−1(X,−) → RA(−, (X, i)) → Ai(−, X) → 0.

Since DAi−1(X, −) has finite projective dimension over A by the property (G), and by the inductive hy-
pothesis, we have DAi−1(X, −) ∈ thickM. Therefore Ai(−, X) is in thickM.

Next we show that A−i(−, X) ∈ thickM for i > 0. Assume that A−j(−, X) ∈ thickM for 0 ≤ j ≤
i − 1. By Lemma 3.5, A−i(−, X) belongs to modRA. By applying the duality s∗D to this module, we 
have s∗D(A−i(−, X)) � DAop

i (X, −) ∈ mod(Aop
i ) ⊂ modR(Aop). Let n be the projective dimension of 

DAop
i (X, −) in mod(Aop

i ) and

Qn
f−→ · · · → Q1 → Q0 → DAop

i (X,−) → 0

be the first n arrows of a minimal projective resolution of DAop
i (X, −) in modR(Aop). Put K := Ker f . We 

have K ∈ GP(R(Aop)) by Lemmas 2.7 (b) and 3.13 (a). By applying ρ to this resolution, we have K ∈
GP(R(Aop), Aop). Since the projective dimension of DAop

i (X, −) in mod(Aop
i ) is n and by Lemma 3.12 (c), 
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we have ρi(K) = 0. Moreover by Lemma 3.12 (c), we have ρ≥i+1(K) = 0. Therefore an RA-module K ′ :=
(D(s∗)−1)(K) ∈ GP(RA, A) satisfies ρ<−i+1(K ′) = 0. Since K ′ is a finitely generated RA-module, SuppK ′

is finite. Thus by Lemma 3.4 (b), K ′ has a finite filtration with subquotients ρj(K ′) for −i + 1 ≤ j ≤ m, 
where m = max SuppK ′. By the inductive hypothesis, K ′ ∈ thickM holds. We have an exact sequence in 
GP(RA)

0 → A−i(−, X) → Q′
0 → Q′

1 → · · · → Q′
n → K ′ → 0,

where each Q′
l := (D(s∗)−1)(Ql) is a projective RA-module for 0 ≤ l ≤ n by Lemma 2.15 (a). This means 

A−i(−, X) � K ′[−n − 1] in GP(RA, A). Therefore we have A−i(−, X) ∈ thickM. �
Proof of Theorem 3.10. (a) This follows from Propositions 3.14 and 3.15.

(b) Let M ∈ GP(RA). By Lemma 3.6, we have ρ(M) ∈ modA. Therefore, since each object of modA has 
finite projective dimension, we have GP(RA, A) = GP(RA) and GP(RA, A) = GP(RA). Since A and Aop

satisfy (IFP) and each object of modA and mod(Aop) has finite projective dimension, A and Aop satisfy 
(G). Thus the assertion follows from (a). �
Proof of Corollary 3.11. Since A and Aop are dualizing k-varieties, both of them satisfy (IFP). By Lem-
mas 2.9, 3.2, Proposition 2.16 and Theorem 3.7, GP(RA) = modRA holds. The assertion directly follows 
from Theorem 3.10. �
3.3. Happel’s theorem for functor categories

As an application of Theorem 3.10, we show Happel’s theorem for functor categories. We need the 
following lemma.

Lemma 3.16. Let A be a k-linear, Hom-finite additive category and assume that A and Aop satisfy (IFP). 
Let X, Y ∈ A, T := GP(RA). We have the following equality:

T (A0(−, X),A0(−, Y )[n]) �
{
A(X,Y ) n = 0,
0 else.

Proof. By Proposition 3.14, T (A0(−, X), A0(−, Y )[n]) = 0 holds for any n �= 0. Moreover we have

(ModRA)(A0(−, X),RA(−, (Y, 0))) � (Mod(RA)op)(DRA(−, (Y, 0)),DA0(−, X))

� (Mod(RA)op)(RA((Y,−1),−),DA0(−, X))

� DA0((Y,−1), X) = 0, (3.4)

where we use Lemma 3.2 (b) and Yoneda’s lemma. By Lemma 3.3 (b), if a morphism f : A0(−, X) →
A0(−, Y ) in ModRA factors through an object of proj RA, then f factors through RA(−, (Y, 0)). Thus by 
the equality (3.4), we have

T (A0(−, X),A0(−, Y )) = (ModRA)(A0(−, X),A0(−, Y )).

By applying the functor (ModRA)(−, A0(−, Y )) to the exact sequence of Lemma 3.3 (b), since
(ModRA)(DA−1(X, −), A0(−, Y )) = 0 holds, we have
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(ModRA)(A0(−, X),A0(−, Y )) � (ModRA)(RA(−, (X, 0)),A0(−, Y ))

� A0((X, 0), Y )

� A(X,Y ). �
We have the following result, which is a functor category version of Happel’s theorem.

Corollary 3.17. Let A be a k-linear, Hom-finite additive category and assume that A and Aop satisfy (IFP).

(a) If A and Aop satisfy (G), then we have a triangle equivalence

Kb(projA) � GP(RA,A).

(b) If each object of modA and mod(Aop) has finite projective dimension, then we have a triangle equivalence

Kb(projA) � GP(RA).

Proof. (a) Let F := GP(RA, A) and P := proj RA. By Proposition 3.8, F is a Frobenius category such that 
the projective objects are precisely the objects of P. Since the inclusion functor projA � projA0 → F is 
exact, it induces a triangle functor Kb(projA) → Kb(F). By restricting the stable t-structure obtained from 
Proposition 2.18 to K−,b(F), we have a stable t-structure (K−,b(P), Ka(F) ∩K−,b(F)) on K−,b(F). Therefore, 
there exists a triangle functor K−,b(F) → K−,b(P) such that the inclusion functor K−,b(P) → K−,b(F) is a 
left adjoint. Then we have the following triangle functors

F : Kb(projA) → K−,b(P) → K−,b(P)/Kb(P) → F ,

where the third functor is a quasi-inverse of the equivalence obtained from Theorem 2.17. We denote by F
the composite of these functors. We show that F is an equivalence by using Lemma 2.19.

Put U := Kb(projA) and T := GP(RA, A) = F . Note that projA is a subcategory of U . We show that 
the map

FM,N [n] : U(M,N [n]) → T (FM,FN [n])

is an isomorphism for any M, N ∈ projA and n ∈ Z. By Theorem 2.17, a quasi-inverse of K−,b(P)/Kb(P) →
F is induced from the composite of the canonical functors F → K−,b(P) → K−,b(P)/Kb(P). Therefore we 
have F (A(−, X)) = A0(−, X) for any X ∈ A. For any X, Y ∈ A, we have

U(A(−, X),A(−, Y )) = A(X,Y ), U(A(−, X),A(−, Y )[n]) = 0,

for n �= 0. Consequently, by Lemma 3.16, FM,N [n] is an isomorphism for any M, N ∈ projA and n ∈ Z.
We show that U = Kb(projA) is idempotent complete. For an additive category B, we denote by Cb(B) the 

category of bounded complexes of B. Since projA is Hom-finite, so is Cb(projA). Because Cb(projA) is closed 
under taking direct summands in Cb(ModA), Cb(projA) is idempotent complete. Thus by Proposition 2.10, 
Cb(projA) is a Krull-Schmidt category. By Proposition 2.10 (iii) and since there exists a full dense functor 
from Cb(projA) to Kb(projA), the latter category is also Krull-Schmidt. Therefore by Proposition 2.10, 
Kb(projA) is idempotent complete. Clearly we have thickU (projA) = U . Since Im(F |proj A) = M holds, we 
have thick(Im(F )) = T by Theorem 3.10 (a). Therefore F is an equivalence by Lemma 2.19.

(b) Since each object of modA has finite projective dimension, we have GP(RA, A) = GP(RA) and thus 
GP(RA, A) = GP(RA). Moreover, by the same assumption, A and Aop satisfy (G). Therefore we have the 
assertion by (a). �
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Corollary 3.18. Let A be a dualizing k-variety. If each object of modA and mod(Aop) has finite projective 
dimension, then we have a triangle equivalence

Db(modA) � mod RA.

Proof. If A is a dualizing k-variety, then GP(RA) = modRA holds. Since the natural inclusion Kb(projA) →
Db(modA) is a triangle equivalence, the assertion directly follows from Corollary 3.17. �
4. Proof of Theorem 1.1

Throughout this section, let A be a finite dimensional hereditary k-algebra, that is, gldim(A) ≤ 1. In this 
section, we apply Corollary 3.18 to modA and show Theorem 4.5.

We denote by modA the category of the finitely generated A-modules and denote by τ and τ−1 the 
Auslander-Reiten translations of A. We call an indecomposable A-module M preprojective (resp. preinjec-
tive) if there exists an indecomposable projective A-module P (resp. injective A-module I) and an integer 
i ≤ 0 (resp. i ≥ 0) such that M � τ i(P ) (resp. M � τ i(I)). We call an indecomposable A-module M regular
if M is neither preprojective nor preinjective. Then it is easy to see that an indecomposable A-module 
M is regular if and only if τ i(M) �= 0 for any i ∈ Z (see [5, VIII. 4] for instance). Define the following 
subcategories of modA:

P := add{M ∈ modA | M is a preprojective module},
I := add{M ∈ modA | M is a preinjective module},
R := add{M ∈ modA | M is a regular module}.

We denote by Db(modA) the bounded derived category of modA and denote by S = DA ⊗L
A (−) a Serre 

functor on Db(modA). We regard modA as a full subcategory of Db(modA) by the canonical inclusion. Thus 
for any X ∈ Db(modA), X ∈ modA if and only if Hi(X) = 0 for any i �= 0.

The following proposition is well known (see [1, Chapter VIII. 2.1. Proposition] [13, Chapter I, 5.2, 
Lemma]).

Proposition 4.1. Let A be a finite dimensional representation-infinite hereditary k-algebra. Then we have 
the following equalities.

Db(modA) =
∨
i∈Z

(modA)[i],

modA = P ∨R ∨ I.

We denote by modpA the full subcategory of modA consisting of modules without non-zero projective 
direct summands. The following lemma is used to define a functor from R(modpA) to Db(modA).

Lemma 4.2. Let A be a finite dimensional representation-infinite hereditary k-algebra. For any i < 0 and 
j > 1, we have

Si(modpA) ⊂ add(A) ∨
∨
l<0

modA [l], Sj(modpA) ⊂ add(DA) ∨
∨
l>1

modA [l].

Proof. Let M ∈ modpA be an indecomposable A-module. By the description of the Serre functor S and 
the first equation of Proposition 4.1, we have S−1(M) ∈ projA if M is injective, or S−1(M) ∈ modA[−1]
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if otherwise. This, together with S−1(projA) ⊂ modA[−1], implies the first inclusion. Similarly, the second 
inclusion follows. �

We define an additive functor

Φ : R(modpA) → Db(modA)

as follows. For X ∈ modpA and i ∈ Z, let Φ(X, i) := Si(X). For X, Y ∈ modpA and i, j ∈ Z, since S is a 
Serre functor of Db(modA), we have

HomDb(modA)
(
Si(X),Sj(Y )

)
�

⎧⎪⎪⎨
⎪⎪⎩

HomDb(modA)(X,Y ) i = j,

D HomDb(modA)(Y,X) j = i + 1,
0 else,

where the last isomorphism follows from Lemma 4.2. By using these isomorphisms, we define a map

Φ(X,i),(Y,j) : HomR(modpA)((X, i), (Y, j)) → HomDb(modA)
(
Si(X),Sj(Y )

)
,

and we extend Φ on R(modpA) additively. Then Φ is actually a functor, since a Serre duality is bifunctorial.
The first theorem of this section is the following. Put S1 := S◦[−1]. By the description of the Serre functor 

S and the definition of the Auslander-Reiten translation τ , H0(S1(M)) � τ(M) and H0(S−1
1 (M)) � τ−1(M)

hold for any M ∈ modA, see also [1, Chapter IV. 2.4. Proposition]. Since A is hereditary, the canonical 
functor modpA → modA induces an equivalence modpA � modA.

Theorem 4.3. Let A be a finite dimensional representation-infinite hereditary k-algebra. Then the functor 
Φ : R(modpA) → Db(modA) is an equivalence of additive categories. In particular, we have an equivalence 
R(modA) → Db(modA) of additive categories.

Proof. By the definition, Φ is fully faithful. We show that Φ is dense. Let X be an indecomposable object 
of Db(modA). By Proposition 4.1, there exist an indecomposable A-module M and an integer l such that 
X � M [l].

Assume that M is a preprojective module. If P is an indecomposable projective module, then S−i
1 (P ) has 

cohomology concentrated in degree zero for any i ≥ 0. Therefore, there exist an indecomposable projective 
A-module P and i ≥ 0 such that M � S−i

1 (P ). If i + l > 0, then we have S−(i+l)
1 (P ) ∈ modpA and

Φ(S−(i+l)
1 (P ), l) = Sl(S−(i+l)

1 (P ))

= S−i
1 (P )[l]

� X.

If i + l ≤ 0, then for an injective A-module S(P ), we have S−(i+l)
1 (S(P )) ∈ modpA and

Φ(S−(i+l)
1 (S(P )), l − 1) = Sl−1(S−(i+l)

1 (S(P )))

= S−i
1 (P )[l]

� X.

Next assume that M is a preinjective module. There exist an indecomposable injective A-module I and 
i ≥ 0 such that M � Si

1(I). If i − l ≥ 0, then we have Si−l
1 (I) ∈ modpA and
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Φ(Si−l
1 (I), l) = Sl(Si−l

1 (I))

= Si
1(I)[l]

� X.

If i − l < 0, then we have Si−l
1 (S−1(I)) ∈ modpA and

Φ(Si−l
1 (S−1(I)), l + 1) = Sl+1(Si−l

1 (S−1(I)))

= Si
1(I)[l]

� X.

Assume that M is a regular module. Then we have S−l
1 (M) ∈ R ⊂ modpA and Φ(S−l

1 (M), l) =
Sl(S−l

1 (M)) = M [l] holds. Therefore the functor Φ : R(modpA) → Db(modA) is dense. The last asser-
tion follows from the equivalence modpA � modA. �

There is the well known equivalence Db(H) � RepH for a hereditary abelian category H [20, Theorem 3.1]. 
Theorem 4.3 is an analog of this equivalence, in the sense that both equivalences give “repetitive shape” of 
the derived category of a hereditary algebra. But these equivalences are quite different, since the equivalence 
of Theorem 4.3 is induced from the Serre functor, on the other hand, the equivalence Db(H) � RepH is 
induced from an inclusion functor.

We recall the following proposition.

Proposition 4.4. Let C be a skeletally small dualizing k-variety and D := modC. Let P be the full subcategory 
of D consisting of all projective C-modules. Then the following statements hold.

(a) D/[P] is a dualizing k-variety.
(b) Assume that the global dimension of modC is at most n, then the global dimension of mod(D/[P]) is at 

most 3n − 1.

Proof. (a) This follows from [3, Proposition 6.2].
(b) Throughout only this proof, we use the following notation, which is compatible with that of [3]. We 

denote by modD the subcategory of modD consisting of objects M such that M(Q) = 0 for any Q ∈ P. Then 
this is an abelian subcategory of modD. We have an equivalence mod(D/[P]) � modD, see [3, Section 6]. 
Thus the assertion follows from [3, Proposition 10.2]. �

Then we apply Corollary 3.18 to modA.

Theorem 4.5. Let A be a finite dimensional hereditary k-algebra. Then we have the following triangle equiv-
alences

mod Db(modA) � mod R(modA) � Db(mod(modA)).

Proof. If A is a representation-finite algebra, then equivalences are shown by Iyama-Oppermann [14, Corol-
lary 4.11]. Assume that A is a representation-infinite algebra. The first equivalence comes from Theorem 4.3. 
By Proposition 4.4, modA is a dualizing k-variety such that the global dimension of mod(modA) is at most 
two. Therefore we can apply Corollary 3.18 to the dualizing k-variety modA. We have the second equiva-
lence. �
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We say that two dualizing k-varieties A and A′ are derived equivalent if the derived categories of modA
and modA′ are triangle equivalent.

Corollary 4.6. Let A, A′ be representation-infinite hereditary algebras. If A and A′ are derived equivalent, 
then modA and modA′ are derived equivalent.

Remark 4.7. If A is a representation-finite hereditary algebra, then Theorems 4.3, 4.5 and Corollary 4.6
were shown by Iyama-Oppermann, see [14, Theorem 4.7, Corollary 4.11].
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