JOURNAL OF PURE AND APPLIED ALGEBRA | 卷:224 |
Minimal set of binomial generators for certain Veronese 3-fold projections | |
Article | |
Colarte, Liena1  Miro-Roig, Rosa M.1  | |
[1] Univ Barcelona, Dept Matemat & Informat, Gran Via Corts Catalanes 585, E-08007 Barcelona, Spain | |
关键词: Monomial ideals; Binomial ideals; Lattice ideals; GT-systems; Toric varieties; | |
DOI : 10.1016/j.jpaa.2019.06.009 | |
来源: Elsevier | |
【 摘 要 】
The goal of this paper is to explicitly describe a minimal binomial generating set of a class of lattice ideals, namely the ideal of certain Veronese 3-fold projections. More precisely, for any integer d >= 4 and any d-th root e of 1 we denote by X-d the toric variety defined as the image of the morphism phi(Td) : P-3 -> P mu(Td)-1 where T-d are all monomials of degree d in k[x, y, z, t] invariant under the action of the diagonal matrix M(1, e, e(2), e(3)). In this work, we describe a Z-basis of the lattice L-eta associated to I(X-d) as well as a minimal binomial set of generators of the lattice ideal I(X-d) = I+(eta). (C) 2019 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jpaa_2019_06_009.pdf | 522KB | download |