期刊论文详细信息
JOURNAL OF PURE AND APPLIED ALGEBRA 卷:224
Minimal set of binomial generators for certain Veronese 3-fold projections
Article
Colarte, Liena1  Miro-Roig, Rosa M.1 
[1] Univ Barcelona, Dept Matemat & Informat, Gran Via Corts Catalanes 585, E-08007 Barcelona, Spain
关键词: Monomial ideals;    Binomial ideals;    Lattice ideals;    GT-systems;    Toric varieties;   
DOI  :  10.1016/j.jpaa.2019.06.009
来源: Elsevier
PDF
【 摘 要 】

The goal of this paper is to explicitly describe a minimal binomial generating set of a class of lattice ideals, namely the ideal of certain Veronese 3-fold projections. More precisely, for any integer d >= 4 and any d-th root e of 1 we denote by X-d the toric variety defined as the image of the morphism phi(Td) : P-3 -> P mu(Td)-1 where T-d are all monomials of degree d in k[x, y, z, t] invariant under the action of the diagonal matrix M(1, e, e(2), e(3)). In this work, we describe a Z-basis of the lattice L-eta associated to I(X-d) as well as a minimal binomial set of generators of the lattice ideal I(X-d) = I+(eta). (C) 2019 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jpaa_2019_06_009.pdf 522KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次