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The goal of this paper is to explicitly describe a minimal binomial generating set 
of a class of lattice ideals, namely the ideal of certain Veronese 3-fold projections. 
More precisely, for any integer d ≥ 4 and any d-th root e of 1 we denote by Xd the 
toric variety defined as the image of the morphism ϕTd

: P3 −→ Pμ(Td)−1 where 
Td are all monomials of degree d in k[x, y, z, t] invariant under the action of the 
diagonal matrix M(1, e, e2, e3). In this work, we describe a Z-basis of the lattice Lη

associated to I(Xd) as well as a minimal binomial set of generators of the lattice 
ideal I(Xd) = I+(η).

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

A binomial ideal I ⊂ k[x0, . . . , xn] with k a field is an ideal generated by polynomials with at most two 
summands, say axα + bxβ , where a, b ∈ k and α, β ∈ Zn+1

+ . Binomial ideals are a large class of ideals which 
have been amply studied in Combinatoric, Commutative Algebra as well as in Algebraic Geometry. In [10], 
it was stated that prime binomial ideals are precisely the defining ideals of toric varieties and hence they 
are lattice ideals, i.e. given a prime binomial ideal I ⊂ k[x0, . . . , xn] there is a lattice L ⊂ Zn+1 such that 
I = IL := {xu − xv | u, v ∈ Zn+1 and u − v ∈ L}. Ever since, to compute explicitly a minimal set of 
generators for lattice ideals has been a challenging problem. It is worthwhile to point out that for a given 
generating set D of the lattice L the ideal I(D) = (xα+ − xα− | α+, α− ∈ Zn+1

+ , α+ − α− ∈ D) ⊆ IL and 
the equality does not hold in general.
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In [10], Eisenbud and Sturmfels proved that IL is a prime ideal if and only if the lattice L is saturated. 
For prime binomial ideals, a set of generators D of L completely characterizes a set of generators of IL. 
Indeed, a generating set D of L is called a Markov basis if for any lattice point α+ − α− ∈ L there exists a
finite sequence {a1, . . . , at} ⊂ Zn+1

+ satisfying a1 = α+, at = α− and ai − ai+1 ∈ D for all 1 ≤ i ≤ t. In [8], 
Diaconis and Sturmfels showed that given a set of generators D of L then I(D) = IL if and only if D is a 
Markov basis. We cite [4], [5], [6], [8] and [12] for a detailed exposition of Markov bases of lattice ideals and 
related problems.

In this paper, we focus our attention in computing a minimal binomial set of generators of a large 
family of binomial ideals I(Xd). They are the ideals associated to suitable projections of Veronese 3-folds. 
A Veronese 3-fold V is a projective variety given parametrically by the set M3,d of all monomials of degree 
d in k[x0, x1, x2, x3] and by a projection of V we understand a projective 3-fold given parametrically by a 
subset of M3,d. In [9], Gröbner proved that V is arithmetically Cohen-Macaulay (aCM, for short) and its 
ideal I(V ) is generated by quadrics. This is not longer true for all projections of V and it is a longstanding 
open problem to find a minimal set of generators of any projection of V as well as determine whether a 
projection of V is aCM. In this paper, we will consider as a subset of M3,d the set Td of all monomials of 
degree d invariant under the action of the diagonal matrix M(1, e, e2, e3) where e is a primitive root of 1 of 
order d.

Our interest in these ideals Td relies on the following three facts: (1) For all d ≥ 4 Td fails the Weak 
Lefschetz property (WLP) in degree d − 1; (2) The associated morphism ϕTd

: P 3 −→ Pμ(Td)−1 is a Galois 
cover of degree d with cyclic Galois group Z/dZ and the image Xd of ϕTd

is a 3-dimensional rational 
projective variety smooth outside the image of the 4 fundamental points. We call it a GT-threefold; and 
(3) the 3-fold Yd = Im(φ) where φ : Pn ��� P

(3+d
d

)
−μ(Td)−1 is the rational map associated to (I−1)d, satisfies 

at least one Laplace equation of order d − 1.
Our goal is to prove that the homogeneous ideal I(Xd) of the GT -threefold Xd is the homogeneous prime 

binomial ideal associated to a saturated partial character η of Zμ(Td) with associated lattice Lη. Afterwards 
we explicitly compute a minimal binomial set of generators of I(Xd). The lattice points associated to these 
set of generators form a Markov basis of Lη. Our main result states that I(Xd) is generated by quadrics if 
d is even and by quadrics and cubics if d is odd.

Next we outline the structure of this note. In Section 2, we fix the notation we use in the rest of this 
paper, we relate artinian ideals failing the Weak Lefschetz Property to projective varieties satisfying at least 
one Laplace equation and we recall the notion of Togliatti systems and GT -systems introduced in [17] and 
[15]. In Section 3, we give an explicit description of all monomials Td, d ≥ 4, invariant under the action of 
the diagonal matrix M(1, e, e2, e3) and we prove that Td is a GT-system (Proposition 3.3).

The main body of this work is developed in Sections 4 and 5. We denote by Xd the GT-threefold associated 
to the GT-system Td and we first show that Xd is an irreducible toric variety whose associated ideal I(Xd)
is a lattice ideal. In Section 4, we consider the ideal Id generated by all binomials of degree 2 vanishing 
in Xd. We associate to Id a lattice Lη and a partial character η of Zμ(Td). We demonstrate that Lη is a 
saturated lattice of rank μ(Id) − 4 (Theorem 4.3) and we show that I(Xd) is the lattice ideal I+(η) of Lη

(Corollary 4.4). In Section 4, we also describe a Z-basis of the lattice Lη (Corollary 4.16) and we explore 
the relation between Id and I+(η).

We devote Section 5 to explicitly determine a minimal set of generators of the lattice ideals I(Xd). Our 
main result states that Id = I(Xd) if d is even and I(Xd) = Id + J if d is odd where J is an ideal generated 
by certain set of cubics of I(Xd) that we properly specify (Theorem 5.6). All techniques and results we 
develop to study the lattice ideal I(Xd) are inspired by the ones of Markov basis explained in [8], [12] and 
[6]. The set of lattice points of generators of Id if d even and Id and J if d odd forms a Markov basis of Lη. 
In Section 6, we observe that all GT -varieties are aCM and we concern about computing a minimal free 
resolution of Xd.
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2. Preliminaries

Throughout this paper we consider the homogeneous polynomial ring R = k[x0, · · · , xn] where k is an 
algebraically closed field of characteristic zero. Let I ⊂ R be a homogeneous artinian ideal. We say that I
has the Weak Lefschetz Property (WLP) if there is a linear form L ∈ (R/I)1 such that, for all integers j, 
the multiplication map

×L : (R/I)j−1 → (R/I)j

has maximal rank, i.e. it is injective or surjective. Though many homogeneous artinian ideals are expected 
to have the WLP, establishing this property is often rather difficult. Recently the failure of the WLP has 
been connected to a large number of problems which seem to be unrelated at first glance. For example, in 
[17], Mezzetti, Miró-Roig and Ottaviani proved that the failure of the WLP is related to the existence of 
varieties satisfying at least one Laplace equation of order greater than 2. More precisely, they proved:

Theorem 2.1. Let I ⊂ R be an artinian ideal generated by r forms F1, . . . , Fr of degree d and let I−1 be its 
Macaulay inverse system. If r ≤

(
n+d−1
n−1

)
, then the following conditions are equivalent:

(1) I fails the WLP in degree d − 1;
(2) F1, . . . , Fr become k-linearly dependent on a general hyperplane H of Pn;
(3) the n-dimensional variety X = Im(ϕ) where ϕ : Pn ��� P

(n+d
d

)
−r−1 is the rational map associated to 

(I−1)d, satisfies at least one Laplace equation of order d − 1.

Proof. See [17, Theorem 3.2]. �
Motivated by the above results, Mezzetti, Miró-Roig and Ottaviani introduced the following definitions 

(see [17] and [15]):

Definition 2.2. Let I ⊂ R be an artinian ideal generated by r forms of degree d, and r ≤
(
n+d−1
n−1

)
. We will 

say:

(i) I is a Togliatti system if it fails the WLP in degree d − 1.
(ii) I is a monomial Togliatti system if, in addition, I can be generated by monomials.
(iii) I is a smooth Togliatti system if, in addition, the rational variety X is smooth.
(iv) A monomial Togliatti system I is minimal if there is no proper subset of the set of generators defining 

a monomial Togliatti system.

The names are in honor of Togliatti who classified all rational surfaces parameterized by cubics and 
satisfying at least one Laplace equation of order 2 and he proved that for n = 2 the only smooth Togliatti 
system of cubics is

I = (x3
0, x

3
1, x

3
2, x0x1x2) ⊂ k[x0, x1, x2]

(see [2], [20] and [21]). The systematic study of Togliatti systems was initiated in [17] and for recent results 
the reader can see [18], [15], [1], [19] and [16]. Precisely in the latter reference the authors introduced the 
notion of GT-system which we recall now.

Definition 2.3. A GT-system is an artinian ideal I ⊂ R generated by r forms F1, . . . , Fr of degree d such 
that:
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i) I is a Togliatti system.
ii) The regular map φI : Pn → P r−1 defined by (F1, . . . , Fr) is a Galois covering of degree d with cyclic 

Galois group Z/dZ.

Any representation of the cyclic group Z/dZ as subgroup of GL(n +1, k) can be diagonalized. In particular 
it is represented by a diagonal matrix of the form

Mα0,α1,...,αn
=

⎛
⎜⎝
eα0 0 . . . 0
0 eα1 . . . 0

. . .
0 0 . . . eαn

⎞
⎟⎠

where e is a primitive dth root of 1 and α0, α1, . . . , αn are integers with

GCD(α0, α1, . . . , αn, d) = 1.

It follows (see [7, Proposition 4.6]) that the above definition is equivalent to the next one:

Definition 2.4. Fix integers 3 ≤ d ∈ Z, 2 ≤ n ∈ Z, with n ≤ d, and 0 ≤ α0 ≤ α1 ≤ · · · ≤ αn ≤ d, e a 
primitive d-th root of 1 and Mα0,α1,··· ,αn

a representation of Z/dZ in GL(n + 1, k). A GT-system will be 
an ideal

Idα0,··· ,αn
⊂ R

generated by all forms of degree d invariant under the action of Mα0,α1,...,αn
provided the number of 

generators μ(Idα0,...,αn
) ≤

(
n+d−1
n−1

)
.

Finally, note that the ideal Idα0,...,αn
is always monomial, i.e. a GT-system is a monomial Togliatti system.

3. GT-systems and GT-varieties

Through this section we fix an integer d ≥ 4, a dth-root of unity e and we write d = 2k+ε = 3k′ +ρ with 
ε ∈ {0, 1} and ρ ∈ {0, 1, 2}. We denote Td ⊂ R = k[x, y, z, t] the ideal generated by the μ(Td) monomials of 
degree d invariant under the action of the diagonal matrix M(1, e, e2, e3). In this section, we will describe 
the ideal Td and we will prove that Td is a GT -system for all d ≥ 4. We also define the GT -varieties Xd and 
their apolar varieties Yd. The homogeneous ideal I(Xd) of a GT -variety Xd is a lattice ideal. A basis of the 
lattice and a system of generators of the lattice ideal will be effectively computed in next sections.

A monomial xαyβzδtγ ∈ R of degree d belongs to Td if it is invariant under the action of M(1, e, e2, e3)
or, equivalently if α, β, δ, γ satisfy:

(∗) α + β + δ + γ = d
β + 2δ + 3γ = rd

}
, r = 0, 1, 2, 3.

The solutions of (∗) in terms of γ and r are the following:

α = δ + 2γ + (1 − r)d,
β = rd− 2δ − 3γ,
γ ∈ {0, . . . , rk′ + 	 rρ

3 
},
δ ∈ {max{0, (r − 1)d− 2γ}, . . . , 	 rd−3γ 
}.
2



772 L. Colarte, R.M. Miró-Roig / Journal of Pure and Applied Algebra 224 (2020) 768–788
Given d ≥ 4, we define

Wd := {(r, γ, δ) ∈ Z3 | 0 ≤ r ≤ 3, 0 ≤ γ ≤ rk′ + 	rρ3 
,max{0, d− 2γ} ≤ δ ≤ 	rd− 3γ
2 
}.

All monomials xαyβzδtγ ∈ Td of degree d are uniquely determined by a triple (r, γ, δ) ∈ Wd. In particular, 
μ(Td) = #Wd.

Remark 3.1. Notice that xd, yd, zd and td are invariant under the action of M(1, e, e2, e3). So, the ideal Td

is artinian.

In next example, we explicitly exhibit Td for d = 4, 5, 6, 7, 8 and 9. For these values of d we cover all 
possibilities of ε and ρ.

Example 3.2.

T4 = (x4, y4, xy2z, x2z2, x2yt, z4, yz2t, y2t2, xzt2, t4), μI4 = 10.

T5 = (x5, y5, xy3z, x2yz2, tx2y2, tx3z, z5, tyz3, t2y2z, t2xz2, t3xy, t5), μI5 = 12.

T6 = (x6, y6, xy4z, x2y2z2, x3z3, tx2y3, tx3yz, t2x4, z6, tyz4, t2y2z2, t2xz3, t3y3, t3xyz, t4x2, t6), μI6 = 16.

T7 = (x7, y7, xy5z, x2y3z2, x3yz3, tx2y4, tx3y2z, tx4z2, t2x4y, z7, tyz5, t2y2z3, t2xz4, t3y3z, t3xyz2, t4xy2,

t4x2z, t7), μI7 = 18.

T8 = (x8, y8, xy6z, x2y4z2, x3y2z3, x4z4, tx2y5, tx3y3z, tx4yz2, t2x4y2, t2x5z, z8, tyz6, t2y2z4, t2xz5, t3y3z2,

t3xyz3, t4y4, t4xy2z, t4x2z2, t5x2y, t8), μI8 = 22.

T9 = (x9, y9, xy7z, x2y5z2, x3y3z3, x4yz4, tx2y6, tx3y4z, tx4y2z2, tx5z3, t2x4y3, t2x5yz, t3x6, z9, tyz7, t2y2z5,

t2xz6, t3y3z3, t3xyz4, t4y4z, t4xy2z2, t4x2z3, t5xy3, t5x2yz, t6x3, t9), μI9 = 26.

Our interest in the study of these monomial ideals relies in the following fact:

Proposition 3.3. For any d ≥ 4, Td is a GT -system. In particular, Td fails the WLP in degree d − 1.

Proof. By Definition 2.4, we only have to check that μ(Td) ≤
(2+d

2
)
. From the definition of Td, it follows 

that

μ(Td) = 2 +
∑
r=1,2

rk′+� rρ
3 �∑

γ=0
(	rd− 3γ

2 
 −max{0, (r − 1)d− 2γ} + 1).

We sum separately for r = 1 and r = 2; we have

k′∑
γ=0

(k − �3γ − ε

2 � + 1) = (k′ + 1)(k + 1) −
k′∑

γ=1
�3γ − ε

2 �, and

2k′+� 2ρ
3 �∑

γ=0
(d− �3γ

2 � + 1) −
k∑

γ=0
(d− 2γ) = (d + 1)(2k′ + 	2ρ

3 
 + 1) + k(k + 1) − d(k + 1) −
2k′+� 2ρ

3 �∑
γ=0

�3γ
2 �.

We only have to focus on the sum of the series of the type 
∑N

γ=1�
3γ−ε

2 � with ε ∈ {0, 1}. We can rewrite 

the series as follows: if N = 2j, 
∑N

γ=1�
3γ−ε

2 � =
∑j

i=1 3i +
∑j

i=1(3i − 1 − ε) = j(3j + 2 − ε). Otherwise 

N = 2j + 1, 
∑N �3γ−ε� =

∑j 3j +
∑j+1 3j − 1 − ε = (j + 1)(3j + 2 − ε). In any case,
γ=1 2 i=1 i=1
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N∑
γ=1

�3γ − ε

2 � = �N2 �(3	N2 
 + 2 − ε).

From this, we conclude

μ(Td) = 2 + (k′ + 1)(k + 1) + (d + 1)(2k′ + 	2ρ
3 
 + 1) + k(k + 1) −

− d(k + 1) − �k
′

2 �(3	k
′

2 
 + 2 − ε) − �
2k′ + 	2ρ

3 

2 �(3	

2k′ + 	2ρ
3 


2 
 + 2).

Substituting d = 3k′+ρ by k = 3k′+ρ−ε
2 we verify that μ(Td) ≤ 2 +(k′+1)(3k′+ρ

2 +1) +(3k′+ρ +1)(2k′+2) +
3k′+ρ

2 (3k′+ρ
2 +1) −(3k′+ρ)(3k′+ρ

2 +1) − k′

2 (3(k′−1)
2 +1) −k′(3k′+2) = 1

4 (20 +6(k′)2+8ρ −ρ2+k′(29 +4ρ)). It 
holds that 14(20 +6(k′)2+8ρ −ρ2+k′(29 +4ρ)) < 1

2 (d +2)(d +1) ⇔ 1/4(16 −12(k′)2+k′(11 −8ρ) +2ρ −3ρ2) ≤ 0, 
which holds for all d ≥ 4. �

We finish this section studying the geometric properties of the rational 3-fold associated to the GT-system 
Td. The morphism ϕTd

: P 3 −→ Pμ(Td)−1 associated to the GT-system Td is a Galois cover of degree d with 
cyclic Galois group Z/dZ represented by M(1, e, e2, e3). In particular, a general fibre of ϕTd

consists of d
points, and hence the image of ϕTd

is a 3-dimensional rational projective variety.

Definition 3.4. We call GT-variety and we denote it by Xd the rational 3-fold defined as the image of ϕTd
.

The morphism ϕTd
: P 3 −→ Pμ(Td)−1 is unramified outside the four fundamental points of P 3: E0 =

[1, 0, 0, 0], E1 = [0, 1, 0, 0], E2 = [0, 0, 1, 0] and E4 = [0, 0, 0, 1]. They are sent by ϕTd
to the singular points 

of Xd, Pi := ϕ(Ei), i = 0, 1, 2, 3, that are cyclic quotient singularities: P0 is of type 1
d (1, 2, 3), P1 is of type 

1
2 (1, d − 1, d − 2), P2 is of type 1

d (d − 2, d − 1, 1) and P3 is of type 1
d (d − 3, d − 2, d − 1).

Remark 3.5. (1) It is worthwhile to point out that the rational 3-fold Xd is also a Galois covering of P 3 with 
Galois group Z/dZ. The covering map Xd → P 3 composed with ϕTd

is P 3 → P 3, [x, y, z, t] → [xd, yd, zd, td].
(2) Let T−1

d be the Macaulay inverse system of Td and denote by Yd the rational 3-fold defined as the 
closure of the image of the rational map ϕT−1

d
: P 3 ��� P

(3+d
d

)
−μ(Td)−1. By Theorem 2.1, Yd satisfies a Laplace 

equation of order d − 1.

Our main goal will be to prove that the homogeneous ideal I(Xd) of a GT-variety Xd ⊂ Pμ(Td)−1 is 
generated by quadrics if d is even and by quadrics and cubics if d is odd (see Corollary 5.7).

4. The lattice of a GT-variety

As in the previous section, we fix d ≥ 4 and we write d = 2k+ε = 3k′+ρ, with ε ∈ {0, 1} and ρ ∈ {0, 1, 2}. 
We want to determine the homogeneous ideal I(Xd) of the GT -threefold Xd ⊂ Pμ(Td)−1 defined by the 
GT-system Td. Since Xd is an irreducible toric variety, I(Xd) is a binomial ideal of codimension μ(Td) − 4
associated to a lattice Lη. As we already pointed out our main goal is to prove that I(Xd) is generated by 
quadrics if d is even and by quadrics and cubics if d is odd (see Corollary 5.7) but first we will explicitly 
describe a Z-basis of the lattice Lη associated to I(Xd) (see Theorem 4.3).

The ideal Td is generated by the set {xδ+2γ+(1−r)dyrd−2δ−3γzδtγ |(r, γ, δ) ∈ Wd} ⊂ K[x, y, z, t] (see 
Section 3). All these monomials are uniquely determined by a triple (r, γ, δ) ∈ Wd and often we will denote 
xδ+2γ+(1−r)dyrd−2δ−3γzδtγ by w(r,γ,δ).

Definition 4.1. We define the binomial ideal Id = (w(r1,γ1,δ1)w(r2,γ2,δ2) − w(r3,γ3,δ3)w(r4,γ4,δ4) | r1 + r2 =
r3 + r4, γ1 + γ2 = γ3 + γ4, δ1 + δ2 = δ3 + δ4) ⊂ k[w(r,γ,δ)](r,γ,δ)∈Wd

.
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Let us illustrate the above definition with an example.

Example 4.2. We take d = 4, (k = 2, k′ = 1, ε = 0, ρ = 1). We have (Example 3.2):

T4 = (x4, y4, xy2z, x2z2, x2yt, z4, yz2t, y2t2, xzt2, t4)

and

W4 = {(0, 0, 0), (1, 0, 0), (1, 0, 1), (1, 0, 2), (1, 1, 0), (2, 0, 4), (2, 1, 2), (2, 2, 0), (2, 2, 1), (3, 4, 0)}.

Solving the equation (r1, γ1, δ1) + (r2, γ2, δ2) = (r3, γ3, δ3) + (r4, γ4, δ4) in W4 we obtain twelve generators 
for I4:

w(0,0,0)w(2,0,4) − w2
(1,0,2) w(0,0,0)w(2,1,2) − w(1,0,2)w(1,1,0)

w(0,0,0)w(2,2,0) − w2
(1,1,0) w(1,0,0)w(1,0,2) − w2

(1,0,1)

w(1,0,0)w(2,2,1) − w(1,0,1)w(2,2,0) w(1,0,0)w(3,4,0) − w2
(2,2,0)

w(1,0,1)w(2,2,1) − w(1,0,2)w(2,2,0) w(1,0,1)w(3,4,0) − w(2,2,0)w(2,2,1)

w(1,0,2)w(2,1,2) − w(1,1,0)w(2,0,4) w(1,0,2)w(2,2,0) − w(1,1,0)w(2,1,2)

w(1,0,2)w(3,4,0) − w2
(2,2,1) w(2,0,4)w(2,2,0) − w2

(2,1,2).

By construction it follows that Id vanishes on Xd, and hence Id ⊆ I(Xd). Let k[w±
(r,γ,δ)] be the ring of 

Laurent polynomials over k. To each binomial

w(r1,γ1,δ1)w(r2,γ2,δ2) − w(r3,γ3,δ3)w(r4,γ4,δ4) ∈ Id

we associated a Laurent binomial

wα := w(r1,γ1,δ1)w(r2,γ2,δ2)w
−1
(r3,γ3,δ3)w

−1
(r4,γ4,δ4) − 1 ∈ k[w±

(r,γ,δ)].

They generate a Laurent binomial ideal whose associated partial character is the trivial one η : Lη → k∗, 
sending η(m) = 1 for all m ∈ Lη, where Lη = 〈α | wα+ −wα− ∈ Id〉. In turn, the partial character η induces 
a lattice ideal I+(η) = (wα+ − wα− ∈ k[w(r,γ,δ)] | α ∈ Lη).

Now we state the main result of this section.

Theorem 4.3.

(1) The lattice Lη is saturated and rk(Lη) = μ(Td) − 4.
(2) I+(η) = (

∏n
i=1 w(ri,γi,δi) −

∏n
i=1 w(r′i,γ′

i,δ
′
i) ∈ k[w(r,γ,δ)] |

∑n
i=1 ri =

∑n
i=1 r

′
i, 

∑n
i=1 γi =

∑n
i=1 γ

′
i,∑n

i=1 δi =
∑n

i=1 δ
′
i}.

Corollary 4.4. I(Xd) = I+(η).

Proof. Theorem 4.3 (1) implies that I+(η) is a prime ideal of codimension 4 (see [10, Corollary 2.5 and 
2.6]). From Theorem 4.3 (2) it follows that I+(η) vanishes in Xd, i.e. I+(η) ⊂ I(Xd). Therefore, I+(η) is 
the homogeneous ideal of an irreducible 3-dimensional variety contained in Xd. Since Xd is irreducible we 
conclude that I+(η) = I(Xd) which proves what we want. �

We trivially have Id ⊂ I+(η) = I(Xd). In next section we will discuss whether the equality holds. Now 
we devote the rest of this section to prove Theorem 4.3.
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Definition 4.5. Fixed n ≥ 2, we define a suitable n-binomial to be a nonzero binomial wα = wα+ − wα− =∏n
i=1 w(ri,γi,δi) −

∏n
i=1 w(r′i,γ′

i,δ
′
i) satisfying 

∑n
i=1 ri =

∑n
i=1 r

′
i, 
∑n

i=1 γi =
∑n

i=1 γ
′
i and 

∑n
i=1 δi =

∑n
i=1 δ

′
i.

Remark 4.6. Any suitable n-binomial wα vanishes in Xd. Therefore, all suitable n-binomials belong to I(Xd). 
Moreover, the generators of Id are suitable 2-binomials.

Definition 4.7. Given a suitable n-binomial wα = wα+ −wα− , we note supp+(wα) (respectively supp−(wα)) 
the support of the monomial wα+ (respectively support of wα−). We say that wα is non trivial if supp+(wα) ∩
supp−(wα) = ∅. Otherwise, we say that wα is trivial.

Example 4.8. The set of generators for I4 in Example 4.2 are the set of all non-trivial suitable 2-binomials.

Definition 4.9. Let m =
∏n

i=1 w(ri,γi,δi) ∈ k[w(r,γ,δ)] be a monomial of degree n. We say that m admits 
a suitable n-binomial if there exists a monomial m′ =

∏n
i=1 w(r′i,γ′

i,δ
′
i) ∈ k[w(r,γ,δ)] of degree n such that 

m −m′ is a non trivial suitable n-binomial.

Let us order the elements (r, γ, δ) ∈ Wd lexicographically.

Definition 4.10. We say that w(r,γ,δ) ∈ k[w(r,γ,δ)] admits a special n-binomial if there exists a non trivial 
suitable n-binomial m −m′ ∈ I+(η) such that (r, γ, δ) = min{supp(m −m′)}.

Example 4.11. The element w(0,0,0) ∈ k[w(r,γ,δ)] admits a special 2-binomial. Indeed, w(0,0,0)w(2,2k′,0) −
w(1,k′,0)w(1,k′,0) is a non trivial suitable 2-binomial and (0, 0, 0) = min{(0, 0, 0), (2, 2k′, 0), (1, k′, 0)}. While 
clearly the element w(3,d,0) does not admit a special n-binomial for any n ≥ 2.

Example 4.12. For d = 4, the set of elements admitting a special 2-binomial is W4−{(1, 1, 0), (2, 1, 2), (2, 2, 0),
(2, 2, 1), (3, 4, 0)} while the element (1, 1, 0) admits a special 3-binomial: w(1,1,0)w(2,1,2)w(3,4,0) −
w(2,2,0)w

2
(2,2,1).

Lemma 4.13. Each monomial m = w(1,γ,δ)w(3,d,0) ∈ k[w(r,γ,δ)] admits a special 2-binomial except: (γ, δ) =
(k′, 	ρ

2
) if ρ �= 0, and γ = δ = 0 if ε = 1.

Proof. Fix (1, γ, δ) ∈ Wd. If there exists such monomial m′, it has to be of the form w(2,γ1,δ1)w(2,γ2,δ2) with 
0 ≤ γi ≤ 2k′ + 	 2ρ

3 
, max{0, d − 2γi} ≤ δi ≤ 	2d−3γi

2 
, i = 1, 2, γ + d = γ1 + γ2 and δ = δ1 + δ2. From this 
follows that when ρ = 1 and γ = k′, there are no γ1 and γ2 summing γ + d = 4k′ + 1. While for ρ = 2, we 
must have γ1 = γ2 = 2k′ + 1. But then δ1 = δ2 = 0, which cannot sum δ = 1.

For the rest of γ’s, we set γ1 := 	d+γ
2 
 and γ2 := �d+γ

2 �. Observe that we always have k ≤ γ1, γ2 ≤
2k′ + 	ρ

2
. From the properties of the floor and ceiling functions we have

	2d− 3γ1

2 
 + 	2d− 3γ2

2 
 ≤ 	4d− 3(d + γ)
2 
 = 	d− 3γ

2 
,

where the equality holds when γ1 and γ2 are not both odd. If the equality holds we can find values δ1 and δ2
such that δ1 + δ2 = δ, as long as δ ≥ max{0, d − 2γ1} + max{0, d − 2γ2}. The last condition always happens 
except for γ = δ = 0 when ε = 1.

Finally, if γ1 and γ2 are odd (and, hence, γ ≥ 2), the result follows taking m′ = w(2,γ1+1,� 2d−3(γ1+1)
2 �) ×

w(2,γ2−1,� 2d−3(γ2−1)
2 �). �

Proposition 4.14. All w(1,γ,δ) ∈ k[w(r,γ,δ)] admit a special 2-binomial or 3-binomial.
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Proof. It is enough to treat the 3 exemptions of Lemma 4.13. For ε = 1 and (1, γ, δ) = (1, 0, 0) it is enough 
to observe that w(1,0,0)w(2,2k′,0) − w(1,1,0)w(2,2k′−1,0) if ρ = 0, w(1,0,0)w(2,2k′,1) − w(1,0,1)w(2,2k′,0) if ρ = 1
and w(1,0,0)w(2,2k′+1,0) − w(1,1,0)w(2,2k′,0) if ρ = 2 are special 2-binomials.

For (1, γ, δ) = (1, k′, 	ρ
2
) and ρ �= 0, the monomial w(1,k′,� ρ

2 �) does not admit a special 2-binomial.
However, w(1,k′,0)w(2,2k′−1,2)w(3,d,0) − w(2,2k′,0)w

2
(2,2k′,1) for ρ = 1 and w(1,k′,1)w(2,2k′,1)w(3,d,0) −

w(2,2k′,2)w
2
(2,2k′+1,0) for ρ = 2 are special 3-binomials. �

Proposition 4.15. All w(2,γ,δ) ∈ k[w(r,γ,δ)] admit a special 2-binomial or 3-binomial except {w(2,2k′−1,0),

w(2,2k′−1,1,), w(2,2k′,0)} if ρ = 0, {w(2,2k′−1,2), w(2,2k′,0), w(2,2k′,1)} if ρ = 1, and {w(2,2k′,1), w(2,2k′,2),

w(2,2k′+1,0)} if ρ = 2.

Proof. For any (2, γ, δ) ∈ Wd different from the excluded cases we consider the monomial m =
w(2,γ,δ)w(2,2k′+� ρ

2 �,�
ρ
2 �−� ρ

2 �). For convenience we note γ′ = 2k′ + 	ρ
2
 and δ′ = �ρ

2� − 	ρ
2
. Set γ1 := γ + 1

and γ2 := γ′ − 1. Unless γ and γ′ are even, and δ = (2d − 3γ)/2 (hence ρ �= 2), there exists δi with 
max{0, d − 2γi} ≤ δi ≤ 	2d−3γi

2 
 such that δ1 + δ2 = δ + δ′.
If γ and γ′ are even, δ = (2d − 3γ)/2 and γ < 2k′ − 2 we take γ1 := γ + 2 and γ2 := 2k′ − 2. Then, there 

exists δi with max{0, d − 2γi} ≤ δi ≤ 	2d−3γi

2 
 such that δ1 + δ2 = δ + δ′.
If γ = 2k′ − 2 and ρ = 1, w(2,2k′−2,4)w(2,2k′,0) −w2

(2,2k′−1,2) is a special 2-binomial when ρ = 1. Finally, if 
ρ = 0, γ = 2k′ − 2 and δ = 3, the element (2, 2k′ − 2, 3) does not admit a special 2-binomial but it admits 
a special 3-binomial: w(2,2k′−2,3)w(2,2k′−1,0)w(2,2k′,0) − w3

(2,2k′−1,1). �
From now on we set:

• W ′
d = Wd − {(2, 2k′ − 1, 0), (2, 2k′ − 1, 1), (2, 2k′, 0), (3, d, 0)} if ρ = 0,

• W ′
d = Wd − {(2, 2k′ − 1, 2), (2, 2k′, 0), (2, 2k′, 1), (3, d, 0)} ρ = 1, and

• W ′
d = Wd − {(2, 2k′, 0), (2, 2k′, 1), (2, 2k′, 2), (3, d, 0)} ρ = 2.

Up to now we have seen that for any (r, γ, δ) ∈ W ′
d the variable w(r,γ,δ) admits a special 2-binomial or 

3-binomial.
For each (r, γ, δ) ∈ W ′

d set D(r,γ,δ) to be one of its special binomials and note α(r,γ,δ) its lattice point. We 
call {D(r,γ,δ)}(r,γ,δ)∈W′

d
a system of special binomials and {α(r,γ,δ)}(r,γ,δ)∈W′

d
its associated system of lattice 

points. The matrix associated to any system of lattice points is upper triangular. So we have the following 
result:

Corollary 4.16. For any system of special binomials {D(r,γ,δ)}(r,γ,δ)∈W′
d

its associated system of lattice points 
{α(r,γ,δ)}(r,γ,δ)∈W′

d
is a Z-basis of Zμ(Td)−4.

Example 4.17. For d = 4 we can choose as a system of special binomials

D(0,0,0) := w(0,0,0)w(2,2,0) − w2
(1,1,0)

D(1,0,0) := w(1,0,0)w(3,4,0) − w2
(2,2,0)

D(1,0,1) := w(1,0,1)w(3,4,0) − w(2,2,0)w(2,2,1)

D(1,0,2) := w(1,0,2)w(3,4,0) − w2
(2,2,1)

D(1,1,0) := w(1,1,0)w(2,1,2)w(3,4,0) − w(2,2,0)w
2
(2,2,1)

D(2,0,4) := w(2,0,4)w(2,2,0) − w2
(2,1,2).
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The matrix associated to its system of lattice points is

⎛
⎜⎜⎜⎜⎝

1 0 0 0 −2 0 0 1 0 0
0 1 0 0 0 0 0 −2 0 1
0 0 1 0 0 0 0 −1 −1 1
0 0 0 1 0 0 0 0 −2 1
0 0 0 0 1 0 1 −1 −2 1
0 0 0 0 0 1 −2 1 0 0

⎞
⎟⎟⎟⎟⎠

So, {α(r,γ,δ)}(r,γ,δ)∈W′
4

is Z-basis of Z6.

Next we prove that any system of lattice points is a Z-basis of the lattice Lη. In the sequel we fix 
{D(r,γ,δ)}(r,γ,δ)∈W′

d
and its associated system of lattice points {α(r,γ,δ)}(r,γ,δ)∈W′

d
. Rephrasing, we want to 

demonstrate that Lρ = 〈α(r,γ,δ)〉(r,γ,δ)∈W′
d
. The lattice Lη is generated by all suitable 2-binomials. Thus 

it is enough to express the lattice point of any non-trivial suitable 2-binomial as a linear combination of 
{α(r,γ,δ)}(r,γ,δ)∈W′

d
. So we fix a non-trivial suitable 2-binomial

wα0 = m−m′ = w(r1,γ1,δ1)w(r2,γ2,δ2) − w(r3,γ3,δ3)w(r4,γ4,δ4)

with associated lattice point

α0 = α+
0 − α−

0 = (r1, γ1, δ1) + (r2, γ2, δ2) − (r3, γ3, δ3) − (r4, γ4, δ4) /∈ {α(r,γ,δ)}(r,γ,δ)∈W′
d
.

Set α1 := α0−
∑+

W′
d,α0

α(ri,γi,δi) +
∑−

W′
d,α0

α(ri,γi,δi), where the summing 
∑+

W′
d,α0

(respectively, 
∑−

W′
d,α0

) 
means that we only consider those elements (ri, γi, δi) ∈ W ′

d ∩ supp(α+
0 ) (respectively, W ′

d ∩ supp(α−
0 )). 

Therefore, α1 is a point of Lη and its associated binomial wα1 is a suitable n-binomial for some n ≥ 2. Fur-
thermore, supp(α0) ∩supp(α1) ∩W ′

d = ∅ and all elements in supp(α1) are strictly bigger than min{supp(α0)}. 
If there exists a lattice point (r, γ, δ) ∈ W ′

d ∩ supp(α1), then we apply the same strategy to α1 and so on. 
Before continuing let us see how the procedure works by an example.

Example 4.18. According to Example 4.2 for d = 4 we have 12 non-trivial suitable 2-binomials. Five of them 
are part of the system of special binomials that we fix in Example 4.17. Let us check that the seven remaining 
cases can be written as a linear combination of the system of special binomials fixed in Example 4.17. The 
first step of the above induction process gives us:

(0, 0, 0) + (2, 0, 4) − 2(1, 0, 2) → α1 = (2, 0, 4) + (2, 2, 0) − 2(2, 1, 2)
(0, 0, 0) + (2, 1, 2) − (1, 0, 2) − (1, 1, 0) → α1 = 0
(1, 0, 0) + (1, 0, 2) − 2(1, 0, 1) → α1 = 0
(1, 0, 0) + (2, 2, 1) − (1, 0, 1) − (2, 2, 0) → α1 = 0
(1, 0, 1) + (2, 2, 1) − (1, 0, 2) − (2, 2, 0) → α1 = 0
(1, 0, 2) + (2, 1, 2) − (1, 1, 0) − (2, 0, 4) → α1 = −[(2, 0, 4) + (2, 2, 0) − 2(2, 1, 2)]
(1, 0, 2) + (2, 2, 0) − (1, 1, 0) − (2, 1, 2) → α1 = 0.

Since D(2,0,4) = w(2,0,4)w(2,2,0) − w2
(2,1,2) (see Example 4.17), next step reduces α1 to 0 in all cases.

In general, this procedure defines inductively a sequence of lattice points {α1, . . . , αs, . . .} ⊆ Lη, such 
that at any step s of the induction process supp(αs−1) ∩ supp(αs) ∩W ′

d = ∅ and min{supp(αs)} is strictly 
smaller than any element in the support of αs−1. So clearly this process stops, indeed W ′

d is finite. Once it 
ends, we obtain a linear combination of {α(r,γ,δ)}(r,γ,δ)∈W′

d
∪ {α0}, we denote it αh ∈ Lη for some h ≥ 1. 

To achieve our goal it suffices to check that αh = 0. We note the elements of Wd −W ′
d by l1, l2, l3 and l4, 
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ordered in the natural way. It is a matter of fact that wαh is a suitable n-binomial and supp(αh) ⊆ Wd−W ′
d. 

Thus there exist non negative integers A1, . . . , A4 and B1, . . . , B4 such that αh =
∑4

i=1 Aili −
∑4

i=1 Bili.

Lemma 4.19. With the above notation, (3, d, 0) /∈ supp(αh).

Proof. Since wαh is a suitable n-binomial, it holds that 2(A1 + A2 + A3) + 3A4 = 2(B1 + B2 + B3) + 3B4. 
In other words, the r’s involved in supp(α+

h ) and supp(α−
h ) form a two full partitions of the same length 

A1 + A2 + A3 + A4 = B1 + B2 + B3 + B4 and weight 2(A1 + A2 + A3) + 3(A4). So necessarily A4 = B4
which proves what we want. �

For sake of completeness we specify αh in each case.

• αh = (A1 −B1)(2, 2k′ − 1, 0) + (A2 −B2)(2, 2k′ − 1, 1) + (A3 −B3)(2, 2k′, 0) when ρ = 0;
• αh = (A1 −B1)(2, 2k′ − 1, 2) + (A2 −B2)(2, 2k′, 0) + (A3 −B3)(2, 2k′, 1) if ρ = 1; and
• αh = (A1 −B1)(2, 2k′ + 1, 0) + (A2 −B2)(2, 2k′, 1), +(A3 −B3)(2, 2k′, 2) for ρ = 2.

Since wαh is a suitable n-binomial, a straightforward computation shows that Ai = Bi, i = 1, 2, 3. �
5. A minimal set of generators for GT-lattice ideals

In the previous section we have stated that I(Xd) is a lattice ideal and we have given a Z-basis of the 
associated lattice Lη as well as a system of generators of I(Xd) (Theorem 4.3 (2)). Precisely, I(Xd) is 
generated by all non trivial suitable n-binomials with n ≥ 2. Now we want to determine a minimal set 
of generators for I(Xd). More concretely, we will prove that the GT -lattice ideal I(Xd) is generated by 
quadrics if d is even and by quadrics and cubics if d is odd (Corollary 5.7). As in previous sections d ≥ 4
and we write d = 2k + ε = 3k′ + ρ, with ε ∈ {0, 1} and ρ ∈ {0, 1, 2}.

For each n ≥ 2 we denote I+(η)n the set of all suitable n-binomials and (I+(η)n) the ideal of k[w(r,γ,δ)]
generated by them. Therefore, we have

I(Xd) =
∑
n≥2

(I+(η)n). (1)

Definition 5.1. Let wα = wα+ −wα− be a non trivial suitable n-binomial. By an I+(η)n-sequence from wα+

to wα− we mean a finite sequence {wa1 , . . . , wat} of monomials in k[w(r,γ,δ)] satisfying the following two 
conditions:

(i) wa1 = wα+ , wat = wα− and
(ii) For all 1 ≤ j < t, waj − waj+1 is a trivial suitable n-binomial.

The second condition in the above definition says that for each 1 ≤ j < t, there exists a variable 
w(rj ,γj ,δj) ∈ supp(waj ) ∩ supp(waj+1). Thus each waj − waj+1 belongs to (I+(η)n−1).

Example 5.2. Any trivial suitable n-binomial wα+ − wα− gives rise to the I+(η)n-sequence {wα+ , wα−}.

Example 5.3. Consider d = 4 and I4 from Example 4.2. The lattice ideal I4 is generated by all suit-
able 2-binomials. Let us give some examples of I+(η)3-sequence. Set wa1 = w(0,0,0)w(1,0,2)w(2,1,2). Since 
w(1,0,2)w(2,1,2) − w(1,1,0)w(2,0,4) is a suitable 2-binomial, {wa1 , wa2} with wa2 := w(0,0,0)w(1,1,0)w(2,0,4) is 
an I+(η)3-sequence. Now observe that w(0,0,0)w(2,0,4) − w(1,0,2)w(1,0,2) is also a suitable 2-binomial. Hence 
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wa2 − wa3 with wa3 := w(1,1,0)w(1,0,2)w(1,0,2) is trivial and so {wα1 , wa2 , wa3} is an I+(η)3-sequence from 
wα1 to wα3 .

As another example of I+(η)3-sequence we have

{w(1,0,0)w(1,0,2)w(2,2,1), w
2
(1,0,1)w(2,2,1), w(1,0,1)w(1,0,2)w(2,2,0), w(1,0,1)w(1,1,0)w(2,1,2)}

and the equality

w(1,0,0)w(1,0,2)w(2,2,1) − w(1,0,1)w(1,1,0)w(2,1,2) = w(2,2,1)w(1,0,0)w(1,0,2) − w(2,2,1)w
2
(1,0,1)

+ w2
(1,0,1)w(2,2,1) − w(1,0,1)w(1,0,2)w(2,2,0)

+ w(1,0,1)w(1,0,2)w(2,2,0) − w(1,0,1)w(1,1,0)w(2,1,2)

shows that the non trivial 3-binomial w(1,0,0)w(1,0,2)w(2,2,1) − w(1,0,1)w(1,1,0)w(2,1,2) ∈ (I+(η)2).

This last example illustrates very well what happens in general. Indeed, we have:

Proposition 5.4. Fix n ≥ 3 and let wα = wα+ −wα− be a suitable n-binomial. Then wα ∈ (I+(η)n−1) if and 
only if there exists an I+(η)n-sequence from wα+ to wα− .

Proof. Suppose that wα ∈ (I+(η)n−1). We note I+(η)n−1 := {q1, . . . , qN} with N the number of all suitable 

(n − 1)-binomials and qj = q
uj

+
j − q

uj
−

j . By hypothesis there exist homogeneous linear forms l1, . . . , lN such 

that wα+ = l1q1 + · · · + lNqN + wα− . Now we write lj = aj(0,0,0)w(0,0,0) + · · · + aj(3,d,0)w(3,d,0), where 

aj(r,γ,δ) ∈ k for all (r, γ, δ) ∈ Wd and j = 1, . . . , N . Therefore wα+ =
∑N

j

∑
(r,γ,δ)∈Wd

(aj(r,γ,δ)w(r,γ,δ)q
uj

+
j −

aj(r,γ,δ)w(r,γ,δ)q
uj
−

j ) + wα− . Hence, there exists j0 such that aj0(r0,γ0,δ0) = 1 and wα+ = w(r0,γ0,δ0)q
u
j0
+

j0
or 

aj0(r0,γ0,δ0) = −1 and wα+ = w(r0,γ0,δ0)q
u
j0
−

j0
. Assume aj0(r0,γ0,δ0) = 1 (analogously we deal with the case 

aj0(r0,γ0,δ0) = −1). Set wa2 = w(r0,γ0,δ0)q
u
j0
−

j0
. We have

wα+ = wα+ − wa2 +
∑

(j,(r,γ,δ)) 
=(j0,(r0,γ0,δ0))

(aj(r,γ,δ)w(r,γ,δ)q
uj

+
j − aj(r,γ,δ)w(r,γ,δ)q

uj
−

j ) + wα− .

Thus

wa2 =
∑

(j,(r,γ,δ)) 
=(j0,(r0,γ0,δ0))

(aj(r,γ,δ)w(r,γ,δ)q
uj

+
j − aj(r,γ,δ)w(r,γ,δ)q

uj
−

j ) + wα− .

We iterate the process, first with wa2 , we construct the I+(η)n-sequence; and taking into account that the 
number of summands decreases at each step we can assure that we end with what we are looking for. We 
only have to note that the described process stops, since at each step we reduce the number of members of 
the linear combination, which is finite. Therefore wat = wα− for some t > 2. �

Let m be the smallest integer m ≥ 2 such that any suitable (m + 1)-binomial of I+(η)m+1 admits a 
I+(η)(m+1)-sequence. By (4.4) and Proposition 5.4 we have

I(Xd) = I+(η) =
∑
n≥2

(I+(η)n) =
m∑
i=2

(I+(η)i) (2)
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Notation 5.5. For any odd integer d ≥ 5, we define

M0
3 := {w(0,0,0)w(2,0,d)w(1,0,δ)}k−1

δ=0 ∪ {w(1,0,0)w(2,γ,d−2γ)w(3,d,0)}k−1
γ=0 and

M1
3 = M2

3 := {w(0,0,0)w(2,0,d)w(1,0,δ)}k−1
δ=0 ∪ {w(1,0,0)w(2,γ,d−2γ)w(3,d,0)}k−1

γ=0

∪ {w(0,0,0)w(2,0,d)w(3,d,0), w(0,0,0)w(1,0,0)w(3,d,0)}.

Now we state our main result.

Theorem 5.6.

(i) If d is even, for any n ≥ 3 and any suitable n-binomial wα = wα+ −wα− there exists a I+(η)n-sequence 
from wα+ to wα− .

(ii) If d is odd, for any n ≥ 4 and any suitable n-binomial wα = wα+ −wα− there exists a I+(η)n-sequence 
from wα+ to wα− .

(iii) If d is odd and n = 3 then a suitable 3-binomial wα = wα+ −wα− admits a I+(η)3-sequence from wα+

to wα− if and only if neither wα+ nor wα− belong to Mρ
3.

Corollary 5.7. (1) If d ≥ 4 is even, then I+(η) = (I+(η)2) = Id.
(2) If d ≥ 5 is odd, then I+(η) = (I+(η)2) +(I+(η)3) = Id+(wα ∈ I+(η)3 | wα+ ∈ Mρ

3 or wα− ∈ M3)ρ.

We devote the rest of this section to prove Theorem 5.6 but first let us illustrate it with a couple of 
examples.

Example 5.8. Using the software Macaulay2 [11], we check that I(X4) = T4 (see Example 4.2).

Example 5.9. Fix d = 5, the binomial ideal I5 is generated by twenty suitable 2-binomials, all lattice points 
satisfying the equation (r1, γ1, δ1) + (r2, γ2, δ2) = (r3, γ3, δ3) + (r4, γ4, δ4).

w(0,0,0)w(2,1,3) − w(1,0,2)w(1,1,1) w(0,0,0)w(2,2,1) − w(1,1,0)w(1,1,1)

w(0,0,0)w(2,2,2) − w2
(1,1,1) w(1,0,0)w(1,0,2) − w2

(1,0,1)

w(1,0,0)w(1,1,1) − w(1,0,1)w(1,1,0) w(1,0,0)w(2,2,2) − w(1,0,1)w(2,2,1)

w(1,0,1)w(1,1,1) − w(1,0,2)w(1,1,0) w(1,0,1)w(2,2,2) − w(1,1,0)w(2,1,3)

w(1,0,1)w(2,2,2) − w(1,0,2)w(2,2,1) w(1,0,1)w(2,3,0) − w(1,1,0)w(2,2,1)

w(1,0,1)w(3,5,0) − w(2,2,1)w(2,3,0) w(1,0,2)w(2,1,3) − w(1,1,0)w(2,0,5)

w(1,0,2)w(2,2,2) − w(1,1,1)w(2,1,3) w(1,0,2)w(2,3,0) − w(1,1,1)w(2,2,1)

w(1,0,2)w(2,3,0) − w(1,1,0)w(2,2,2) w(1,0,2)w(3,5,0) − w(2,2,2)w(2,3,0)

w(1,1,0)w(3,5,0) − w2
(2,3,0) w(2,0,5)w(2,2,1) − w2

(2,1,3)

w(2,0,5)w(2,3,0) − w(2,1,3)w(2,2,2) w(2,1,3)w(2,3,0) − w(2,2,1)w(2,2,2)

plus eight non trivial suitable 3-binomials of I+(η)3:

w(0,0,0)w(1,0,0)w(2,0,5) − w(1,0,1)w
2
(1,0,2) w(0,0,0)w(1,0,0)w(2,3,0) − w3

(1,1,0)

w(0,0,0)w(1,0,0)w(3,5,0) − w2
(1,1,0)w(2,3,0) w(0,0,0)w(1,0,1)w(3,5,0) − w3

(1,0,2)

w(0,0,0)w(2,0,5)w(3,5,0) − w(1,1,1)w
2
(2,2,2) w(1,0,0)w(2,0,5)w(3,5,0) − w(2,1,3)w

2
(2,2,1)

w w w − w3 w w w − w3 .
(1,0,0) (2,1,3) (3,5,0) (2,2,1) (1,1,1) (2,0,5) (3,5,0) (2,2,2)
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None of these eight non trivial suitable 3-binomials admits an I+(η)3-sequence from wα+ to wα− . For in-
stance, consider the non trivial suitable 3-binomial wα = wα+−wα− = w(0,0,0)w(1,0,0)w(2,0,5)−w(1,0,1)w

2
(1,0,2)

of I(X5). Assume that {wa1 , . . . , wat} is an I+(η)3-sequence from wα+ to wα− . Therefore wα+ − wa2

is a trivial suitable 3-binomial. So there are w(r,γ,δ) ∈ {w(0,0,0), w(1,0,0), w(2,0,5)} and a non trivial suit-
able 2-binomial wβ = wβ+ − wβ− such that wα+ − wat = w(r,γ,δ)w

β with wβ+ or wβ− being one of the 
monomials w(0,0,0)w(2,0,5) or w(1,0,0)w(2,0,5). However all non trivial suitable 2-binomials wξ of I5 verifies 
wξ+

, wξ− /∈ {w(0,0,0)w(1,0,0), w(0,0,0)w(2,0,5), w(1,0,0)w(2,0,5)}. Thus we conclude that the non trivial suitable 
3-binomial w(0,0,0)w(1,0,0)w(2,0,5) − w(1,0,1)w

2
(1,0,2) /∈ (I+(η))2) = I5 (see Proposition 5.4).

Now we develop our main techniques in constructing I+(η)n-sequences. Let m =
∏n

i=1 w(ri,γi,δi) be a 
monomial of degree n ≥ 2 and let w(rij ,γij

,δij ) be f variables on the support of m, where 1 ≤ f < n. If 
mf =

∏f
j=1 w(rij ,γij

,δij ) admits a suitable f -binomial mf −m′
f , then m −m′

f

∏
(supp(m)−supp(mf )) w(ri,γi,δi)

is a trivial suitable n-binomial. So determining whether a monomial admits a suitable f -binomial gives us a 
method to construct I+(η)n-sequence from a given monomial. Let us start analyzing whether a monomial 
w(r,γ,δ)w(r′,γ′,δ′) of degree 2 admits a suitable 2-monomial.

Lemma 5.10. Any monomial m = w(0,0,0)w(2,γ,δ) ∈ k[w(r,γ,δ)] admits a special suitable 2-binomial, with the 
following exceptions: (γ, δ) = (2k′ + 	ρ

2
, �
ρ
2� − 	ρ

2
) if ρ �= 0, and γ = 0 if ε = 1.

Proof. If m admits a suitable 2-binomial m − m′ necessary m′ = w(1,γ1,δ1)w(1,γ2,δ2) with 0 ≤ γi ≤ k′, 
0 ≤ δi ≤ 	d−3γi

2 
 for i = 1, 2, and γ1 + γ2 = γ and δ1 + δ2 = δ. From this follows that (2, γ, δ) cannot be 
(2, 2k′ + 1, 0) in case ρ = 2, (2, 2k′, 1) if ρ = 1 and γ = 0 if ε = 1.

Otherwise we set γ1 := 	γ
2 
 and γ2 := �γ

2 �. If d is even and γ1, γ2 are odd or d is odd and 
γ1, γ2 are even we take m′ = w(1,γ1+1,� d−3(γ1+1)

2 �)w(1,γ2−1,� d−3(γ2−1)
2 �). In any other case we take m′ =

w(1,γ1,� d−3γ1
2 �)w(1,γ2,� d−3γ2

2 �). �
Lemma 5.11. Suppose ε = 1.

(i) Any monomial m = w(1,0,0)w(2,γ,δ) admits a suitable 2-binomial except for γ = 0, . . . , k + 1 and δ =
max{0, d − 2γ}.

(ii) Any monomial m = w(1,γ,δ)w(2,0,d) admits a suitable 2-binomial except γ = 0 and δ = 0, . . . , k or γ = 1
and δ = k − 1.

Proof. (i) We want to determine a monomial m′ = w(1,γ1,δ1)w(2,γ2,δ2) such that m − m′ ∈ I+(η)2. If 
δ > max{0, d − 2γ}, we take (1, γ1, δ1) = (1, 0, 1) and (2, γ2, δ2) = (2, γ, δ − 1). Let us to consider the 
remainder cases (2, γ, max{0, d −2γ}) with γ = 0, . . . , 2k′+	ρ

2
. If γ > k+1, (2, γ, max{0, d −2γ}) = (2, γ, 0)
and we take (1, γ1, δ1) = (1, 1, 0) and (2, γ2, δ2) = (2, γ − 1, 0). For 0 ≤ γ ≤ k + 1 a monomial m′ with 
γ1 + γ2 = γ and δ1 + δ2 = δ does not exist because we necessarily have γ1 = i and γ2 = γ − i for some 
0 ≤ i ≤ γ, 0 ≤ δ1 ≤ 	d−3i

2 
 and d − 2(γ − i) ≤ δ2 ≤ 	2d−3γ+3i
2 
 which give us δ < d − 2(γ − i) ≤ δ1 + δ2.

The proof of (ii) is analogous and we leave it to the reader. �
Remark 5.12. (1) The monomial w(0,0,0)w(3,d,0) admits a non trivial suitable 2-binomial only when ρ = 0. 
Indeed, assume that w(0,0,0)w(3,d,0) − w(1,γ1,δ1)w(2,γ2,δ2) is a suitable 2-binomial. Then we have γ1 + γ2 =
3k′ + ρ = k′ + 2k′ + ρ. So γ1 = k′ and γ2 = 2k′ + ρ = 2k′ + 	ρ

2
. The last equality is achieved only when 
ρ = 0.

(2) Suppose ρ = 1. Any monomial m = w(1,k′,0)w(2,γ,δ) admits a suitable 2-binomial except when γ = 2k′. 
Indeed, if γ < 2k′ we take (r1, γ1, δ1) = (1, k′ − 1, δ1) and (r2, γ2, δ2) = (2, γ + 1, δ2) with δ = δ1 + δ2, 



782 L. Colarte, R.M. Miró-Roig / Journal of Pure and Applied Algebra 224 (2020) 768–788
0 ≤ δ1 ≤ 	d−3k′+3
2 
 and max{0, d − 2γ − 2} ≤ δ2 ≤ 	2d−3γ−3

2 
. If γ = 2k′, since γ1 < k′ and γ2 ≤ 2k′ we 
will never have γ = γ1 + γ2.

(3) Suppose ρ = 2. Clearly w(1,k′,1)w(2,2k′+1,0) and w(1,k′,1)w(2,2k,2) if ε = 0 do not admit a suitable 
2-binomial. If d − 3γ is even and δ = 2d−3γ

2 , we take m′ = w(1,k′−2,� d−3(k′−2)
2 �)w(2,γ+2,� 2d−3(γ+2)

2 �). In any 

other case we take m′ = w(1,k′−1,� d−3(k′−1)
2 �)w(2,γ+1,� 2d−3(γ+1)

2 �). Any monomial m = w(1,k′,1)w(2,γ,δ) admits 
a suitable 2-binomial except: γ = 2k′ + 1 and (γ, δ) = (2k′, 2) when ε = 0.

(4) Suppose ρ = 2. Any monomial m = w(1,γ,δ)w(2,2k′+1,0) admits a suitable 2-binomial except γ = k′. 
The proof is analogous and we left it to the reader.

Proposition 5.13. Suppose ε = 1. Let wα = wα+ − wα− be a non-trivial 3-binomial. If wα+ or wα− is one 
of the following:

(i) w(0,0,0)w(2,0,d)w(1,0,δ), δ = 0, . . . , k;
(ii) w(0,0,0)w(2,0,d)w(3,d,0) and ρ �= 0;
(iii) w(0,0,0)w(1,0,0)w(3,d,0) and ρ �= 0;
(iv) w(1,0,0)w(2,γ,d−2γ)w(3,d,0), γ = 0, . . . , k and w(1,0,0)w(2,k+1,0)w(3,d,0);

then there is no I+(η)3-sequence from wα+ to wα− . In particular, wα /∈ (I+(η)2) = Id and Id � I(Xd)

Proof. Let {wa1 , . . . , wat} be an I+(η)3-sequence from wα+ to wα− . So there exist w(r,γ,δ) ∈ k[w(r,γ,δ)] and 
a suitable (n −1)-binomial wα′ such that wa1 −wa2 = w(r,γ,δ)w

α′ . This implies that we can find a monomial 
of degree (n − 1) on the support of wα+ (respectively wα−) admitting a suitable (n − 1)-binomial.

May we suppose that wα+ belongs to the above list. From Lemmas 5.10, 4.13 and 5.11 it follows that 
any monomial of degree 2 that we can form from supp(wu+) in (i), (ii) and (iii) do not admit a non trivial 
suitable 2-binomial contradicting the existence of an I+(η)3-sequence from wα+ to wα− .

In case (iv) we only have to treat the monomials associated to (1, 0, 0) + (2, γ, d − 2γ) for γ = 0, . . . , k
and (1, 0, 0) + (2, k + 1, 0). Fix γ ∈ {0, . . . , k + 1} and assume that there exist (1, γ1, δ1) > (1, 0, 0) and 
(2, γ2, δ2) < (2, γ, δ) such that γ1 + γ2 = γ and δ1 + δ2 = d − 2γ for γ = 0, . . . , k; and δ1 + δ2 = 0 for 
γ = k + 1. Write γ2 = γ − γ1, therefore δ2 ≥ δ + 2γ1. From this we deduce that δ1 + δ2 ≥ δ1 + δ + 2γ1 and 
hence δ1 + 2γ1 must be zero, that is δ1 = 0 = γ1, which is a contradiction. �
Proposition 5.14. Suppose ε = 1.

(1) The monomials

(i) w(0,0,0)w(2,0,d)w(1,0,δ), δ = 0, . . . , k − 1;
(ii) w(0,0,0)w(2,0,d)w(3,d,0);
(iii) w(0,0,0)w(1,0,0)w(3,d,0);
(iv) w(1,0,0)w(2,γ,d−2γ)w(3,d,0), γ = 0, . . . , k − 1

admit a suitable 3-binomial of I+(η)3.
(2) The monomials w(0,0,0)w(2,0,d)w(1,0,k), w(1,0,0)w(2,k,1)w(3,d,0) and w(1,0,0)w(2,k+1,0)w(3,d,0) do not ad-

mit a suitable 3-binomial.

Proof. (1) It is enough to exhibit explicitly a 3-binomial in each case.

(i) For any δ ∈ {0, . . . , k − 1} we have w(0,0,0)w(2,0,d)w(1,0,δ) − w(1,0,k)w(1,0,k)w(1,0,δ+1) belong to I+(η)3.
(ii) We have w(0,0,0)w(2,0,d)w(3,d,0) − w(1,0,k)w(2,k,� k+1

2 �)w(2,k+1,� k+1
2 �) ∈ I+(η)3.

(iii) We have w(0,0,0)w(1,0,0)w(3,d,0) − w k′+� ρ
2 � w k′+� ρ

2 � w(2,2k′+� ρ
2 �,0) ∈ I+(η)3.
(1,� 2 �,0) (1,� 2 �,0)
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(iv) For all 0 ≤ γ ≤ k − 1, w(1,0,0)w(2,γ,d−2γ)w(3,d,0) − w(2,γ+1,max{0,d−2γ−2})w(2,k,1)+(2,k,1) is a suitable 
3-binomial.

(2) If w(0,0,0)w(2,0,d)w(1,0,k)−w(1,γ1,δ1)w(1,γ2,δ2)w(1,γ3,δ3) is a suitable 3-binomial, we must have γ1 = γ2 =
γ3 = 0 and δ1 + δ2 + δ3 = 3k + 1. However, δ1, δ2, δ3 ≤ k. If w(2,γ1,δ1)w(2,γ2,δ2)w(2,γ3,δ3) forms a 3-binomial, 
in these cases, since δ1 + δ2 + δ3 ∈ {0, 1}, we must have γ1, γ2, γ3 ≥ k. But when γ = k, γ1 +γ2 +γ3 = 3k+1
implies that some (2, γi, δi) = (2, k, 1). Finally, if γ = k + 1, then γ1, γ2, γ3 ≥ k + 1 hence we find a similar 
argument. �

Notice that the last two Propositions are false for even values of d. For instance we have that for d even 
{w(0,0,0)w(1,0,0)w(2,0,d), w2

(1,0,k)w(1,0,0)} is a I+(η)3-sequence. For sake of completeness we exhibit a complete 
example.

Example 5.15. We center in I(X4) = I4. We only have to check that all monomials as in Proposition 5.14(2) 
contain a submonomial of degree 2 admitting a non trivial suitable 2-binomial. Indeed, w(0,0,0)w(2,0,4) −
w2

(1,0,2) and w(1,0,0)w(3,4,0) − w2
(2,2,0) are suitable 2-binomials of I4, from which the result follows.

In the sequel we fix n ≥ 3, otherwise indicated. Any non trivial suitable n-binomial wα = wα+ − wα− is 
associated to a lattice point α of the form:

a(0, 0, 0) +
b∑

i=1
(1, γ1

i , δ
1
i ) +

c∑
j=1

(2, γ2
j , δ

2
j ) + e(3, d, 0)

−A(0, 0, 0) −
B∑

s=1
(1, γ1

s , δ
1
s) −

C∑
r=1

(2, γ2
r , δ

2
r) − E(3, d, 0),

for integers 0 ≤ a, b, c, e, A, B, C, E ≤ n and aA = 0 = eE. Since wα is a suitable n-binomial, we have 
restrictions a + b + c + e = A + B + C + E and b + 2c + 3e = B + 2C + 3E.

Proposition 5.16. Let wα = wα+ − wα− be a non trivial suitable n-binomial with w(0,0,0) ∈ supp(wα) or 
w(3,d,0) ∈ supp(wα). Assume that wα+ , wα− /∈ Mρ

3. Then there exist I+(η)n-sequences {wα+ , . . . , wα′
+} and 

{wα′
− , . . . , wα−} where w(0,0,0), w(3,d,0) /∈ supp(wα′

+) ∪ supp(wα′
−).

Proof. We write wα+ = a(0, 0, 0) +
∑b

i=1(1, γ1
i , δ

1
i ) +

∑c
j=1(2, γ2

j , δ
2
j ) + e(3, d, 0) and we assume that a > 0

or e > 0. Analogous we deal with wα− . It is enough to see that we can always decrease the value of a + e

until we reach 0. We analyze separately several cases according to the value of d:

Case 1: Assume ε = 0 and ρ = 0. First we observe that the hypothesis wα non-trivial implies (b, c) �= (0, 0)
or (b, c) = (0, 0) and a = e. If (b, c) = (0, 0) and a = e we have wa

(0,0,0)w
a
(3,d,0) = wa

(1,k′,0)w
a
(2,2k′,0). Otherwise, 

since m = w(3,d,0)w(1,γ1
1 ,δ

1
1) (resp. m = w(0,0,0)w(2,γ2

1 ,δ
2
1)) admits a special suitable 2-binomial m −m′ with 

m′ = w(2,γ2
c+1,δ

2
c+1)w(2,γ2

c+2,δ
2
c+2) (resp. m′ = w(1,γ1

b+1,δ
1
b+1)w(1,γ1

b+2,δ
1
b+2)), we can write

wa1 := wa
(0,0,0)

b∏
i=2

w(1,γ1
i ,δ

1
i )

c+2∏
j=1

w(2,γ2
j ,δ

2
j )w

e−1
(3,d,0)

(resp. wa1 := wa−1
(0,0,0)

b+2∏
i=1

w(1,γ1
i ,δ

1
i )

c∏
j=2

w(2,γ2
j ,δ

2
j )w

e
(3,d,0) )

and build an I+(η)n-sequence {wα+ , wa1} with degw(0,0,0)w
a1 + degw(3,d,0)w

a1 < a + e = degw(0,0,0)w
α+ +

degw(3,d,0)w
α+ and we have decreased by 1 the value of a + e.
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Case 2: Assume ε = 0 and 1 ≤ ρ ≤ 2. The hypothesis wα non-trivial implies (b, c) �= (0, 0) and we can argue 
as in Case 1 unless wα+ = wa

(0,0,0)w
b
(1,k′,0)w

c
(2,2k′,1)w

e
(3,d,0) (resp. wα+ = wa

(0,0,0)w
b
(1,k′,1)w

c
(2,2k′+1,0)w

e
(3,d,0)) 

but such wα+ does not admit a non-trivial n-binomial wα+ − wα− .

Case 3: Assume ε = 1 and ρ = 0. Since w(0,0,0)w(3,d,0) = w(1,k′,0)w(2,2k′,0) we can argue as in the Case 1 
unless wα+ = wa

(0,0,0)w
b
(1,0,0)w

c
(2,0,d) or wα+ = wb

(1,0,0)w
c
(2,0,d)w

e
(3,d,0), the fact that wα+ − wα− is non-

trivial implies b, c > 0 and the hypothesis wα+ /∈ Mρ
3 implies a + b + c > 3 (resp. b + c + e > 3). Set 

m = w(0,0,0)w(1,0,0)w(2,0,d) (resp. m = w(1,0,0)w(2,0,d)w(3,d,0)). By Proposition 5.14 w(0,0,0)w(2,0,d)w(1,0,0) −
w(1,0,k)w(1,0,k)w(1,0,1) (resp. w(1,0,0)w(2,0,d)w(3,d,0) −w(2,1,d−2})w(2,k,1)+(2,k,1)) and we apply the same game 
decreasing a (resp. e) by one.

Case 4: Assume ε = 1 and 1 ≤ ρ ≤ 2. Notice that from the hypothesis wα non trivial we have 
(b, c) �= 0. So we proceed as in Case 1 unless wα+ = wa

(0,0,0)w
b
(1,0,0)w

c
(1,k′,0)w

f
(2,0,d)w

g
(2,2k′,1)w

e
(3,d,0) with 

(b, c, f, g) �= (0, 0, 0, 0) (resp. wα+ = wa
(0,0,0)w

b
(1,0,0)w

c
(1,k′,1)w

f
(2,0,d)w

g
(2,2k′+1,0)w

e
(3,d,0) and (b, c, f, g) �=

(0, 0, 0, 0)). Since wα+ /∈ M1
3 we have (c, g) �= (0, 0) or a + b + f + g + e > 3. By Proposition 5.14 we 

have w(0,0,0)w(1,0,0)w(2,0,d)−w(1,0,k)w(1,0,k)w(1,0,1), w(0,0,0)w(2,0,d)w(3,d,0)−w(1,0,k)w(2,k,� k+1
2 �)w(2,k+1,� k+1

2 �), 
w(0,0,0)w(1,0,0)w(3,d,0)−w(1,1,0)w(1,k′,0)w(2,2k′,0) and w(1,0,0)w(2,0,d)w(3,d,0)−w(2,1,d−2)w(2,k,1)w(2,k,1) are non 
trivial suitable 3-binomials (resp. w(0,0,0)w(1,0,0)w(2,0,d) − w(1,0,k)w(1,0,k)w(1,0,2), w(0,0,0)w(2,0,d)w(3,d,0) −
w(1,0,k)w(2,k,� k+1

2 �)w(2,k+1,� k+1
2 �), w(0,0,0)w(1,0,0)w(3,d,0) − w(1,1,0)w(1,k′,0)w(2,2k′+1,0) and w(1,0,0)w(2,0,d) ×

w(3,d,0) − w(2,1,d−2)w(2,k,1)w(2,k,1)). Then we argue as in Case 3 decreasing a and e unless wα+ =
wa

(0,0,0)w
c
(1,k′,0)w

g
(2,2k′,1)w

e
(3,d,0) (resp. wa

(0,0,0)w
c
(1,k′,1)w

g
(2,2k′+1,0)w

e
(3,d,0)) but such monomial does not admit 

a non trivial suitable n-binomial and the proof is completed. �
Remark 5.17. It is easy to observe that any suitable n-binomial wα = wα+ − wα− =

∏b
i=1 w(1,γ1

i ,δ
1
i ) ×∏c

j=1 w(2,γ2
j ,δ

2
j ) −

∏c′

i=1 w(1,γ3
i ,δ

3
i )
∏b′

j=1 w(2,γ4
j ,δ

4
j ) satisfies b = b′ and c = c′.

Example 5.18. (1) Fix d = 4 and consider the non trivial 3-binomial

w(0,0,0)w(1,0,0)w(2,0,4) − w(1,0,1)w(1,0,1)w(1,0,2).

Since w(0,0,0)w(2,0,4) − w2
(1,0,2) is a non trivial 2-binomial, we define wa1 = w(1,0,0)w

2
(1,0,2) and we get an 

I+(η)3-sequence {w(0,0,0)w(1,0,0)w(2,0,4), w(1,0,0)w
2
(1,0,2), w(1,0,1)w(1,0,1)w(1,0,2)} from w(0,0,0)w(1,0,0)w(2,0,4) to 

w(1,0,1)w(1,0,1)w(1,0,2) where wα′
+ = wa1 .

(2) Fix d = 5 and consider I(X5) and the non trivial 4-binomial w(0,0,0)w(1,0,0)w(2,0,5)w(3,5,0) −
w2

(1,1,0)w(2,1,3)w(2,2,2). We take the suitable 3-binomial w(0,0,0)w(1,0,0)w(2,0,5) − w(1,0,1)w
2
(1,0,2) and we de-

fine wa1 := w(1,0,1)w
2
(1,0,2)w(3,5,0). We observe that w(0,0,0) /∈ supp(wa1). The monomial w(1,0,1)w(3,5,0)

admits a suitable 2-binomial w(1,0,1)w(3,5,0) − w(2,2,1)w(2,3,0). We now define wa2 := w2
(1,0,2)w(2,2,1)w(2,3,0). 

We obtain the I+(η)4-sequence

{w(0,0,0)w(1,0,0)w(2,0,5)w(3,5,0), w(1,0,1)w
2
(1,0,2)w(3,5,0), w

2
(1,0,2)w(2,2,1)w(2,3,0)}

with w(0,0,0), w(3,5,0) /∈ supp(wa2).
(3) Fix d = 5 and consider the non trivial 4-binomial

w(0,0,0)w(2,0,5)w(2,2,1)w(2,3,0) − w3
(1,0,2)w(3,5,0).

Since w(0,0,0)w(2,2,1) − w(1,1,0)w(1,1,1) and w(1,0,2)w(3,5,0) − w(2,2,2)w(2,3,0) are suitable 2-binomials,
{w(0,0,0)w(2,0,5)w(2,2,1)w(2,3,0), w(1,1,0)w(1,1,1)w(2,0,5)w(2,3,0)} and {w2

(1,0,2)w(2,2,2)w(2,3,0), w3
(1,0,2)w(3,5,0)} are 

the I+(η)4-sequences required in Proposition 5.16. Thus is an I+(η)4-sequence. Furthermore, gluing them 
we obtain the I+(η)4-sequence
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{w(0,0,0)w(2,0,5)w(2,2,1)w(2,3,0), w(1,1,0)w(1,1,1)w(2,0,5)w(2,3,0), w
2
(1,0,2)w(2,2,2)w(2,3,0), w

3
(1,0,2)w(3,5,0)}.

We now analyze whether a monomial m = w(r1,γ1,δ1)w(r2,γ2,δ2) with r1, r2 ∈ {1, 2} admits a non-
trivial suitable 2-binomial m − m′ with m′ = w(r3,γ3,δ3)w(r4,γ4,δ4) and r3, r4 ∈ {1, 2}. This problem 
can be reformulated as follows. For which s ≥ 0, setting γ3 := γ1 ± s and γ4 := γ2 ∓ s, there exist 
max{0, (ri − 1)d − 2γi} ≤ δi ≤ 	 rid−3γi

2 
, i = 3, 4, such that δ3 + δ4 = δ1 + δ2.

Lemma 5.19. With the above notation, there exist such δ3 and δ4 with the following exceptions.

(1) For any 1 ≤ r1, r2 ≤ 2, if (r1d1 − 3γ1) and (r2d2 − 3γ2) are even, s is odd, and δ1 and δ2 are the 
maximum ones. We call it the maximum bound problem.

(2) Assume r2 = 2.
(i) If r1 = 1, when doing γ1 + s and γ2 − s we have γ2 − s < k+ ε and δ1 + δ2 < max{0, d − 2γ2 − 2s}.
(ii) If r1 = 2, when doing γ1+s and γ2−s we have δ1+δ2 < max{0, d −2γ1−2s} +max{0, d −2γ2+2s}

and one of the following cases:
(a) γ1 ≥ k + ε and γ2 − s < k + ε,
(b) γ1 < k + ε, γ1 + s ≥ k + ε, γ2 ≥ k + ε and γ1 > γ2 − s,
(c) γ1, γ2 < k + ε, γ1 + s > k + ε.

We call it the minimum bound problem.

Proof. We have max{0, (r1 − 1)d − 2γ1} + max{0, (r2 − 1)d − 2γ2} ≤ δ1 + δ2 ≤ 	 r1d−3γ1
2 
 + 	 r2d−3γ2

2 
 and 

max{0, (r1 − 1)d − 2(γ1 + s)} + max{0, (r2 − 1)d − 2(γ2 − s)} ≤ δ3 + δ4 ≤ 	 r1d−3(γ1+s)
2 
 + 	 r2d−3(γ2−s)

2 
. So 
the result is clear for those values max{0, (r1 − 1)d − 2(γ1 + s)} + max{0, (r2 − 1)d − 2(γ2 − s)} ≤ δ1 + δ2 ≤
	 r1d−3(γ1+s)

2 
 + 	 r2d−3(γ2−s)
2 
. Let us study the remainder cases.

(1) From the properties of the floor and ceiling functions we have

	r1d− 3γ1

2 
 + 	r2d− 3γ2

2 
 ≤ 	r1d− 3γ1 + r2d− 3γ2

2 
 =

	r1d− 3(γ1 + s) + r2d− 3(γ2 − s)
2 
 ≤ 	r1d− 3(γ1 + s)

2 
 + 	r2d− 3(γ2 − s)
2 
 + 1.

Furthermore 	 r1d−3(γ1+s)
2 
 + 	 r2d−3(γ2−s)

2 
 < 	 r1d−3γ1
2 
 + 	 r2d−3γ2

2 
 only when (r1d − 3γ1) and (r2d − 3γ2)
are even and s is odd. From this (1) follows immediately.

(2) is obtained determining which values max{0, (r1 − 1)d − 2γ1} + max{0, (r2 − 1)d − 2γ2} ≤ δ1 + δ2 <

max{0, (r1 − 1)d − 2(γ1 + s)} + max{0, (r2 − 1)d − 2(γ2 − s)}. �
Up to here we have proved the following. Suppose given a non trivial suitable n-binomial wα = wα+−wα−

such that wα+ , wα− /∈ Mρ
3. If w(0,0,0) ∈ supp(wα) or w(3,d,0) ∈ supp(wα), there exit I+(η)n-sequences 

{wα+ , . . . , wα′
+} and {wα′

− , . . . , wα−} such that w(0,0,0), w(3,d,0) /∈ supp(wα′
−) ∪ supp(wα−). Clearly wα′ :=

wα′
+ − wα′

− ∈ (I+(η))n. Notice that wα′ could be trivial or even more it could be zero. In the first case 
{wα+ , . . . , wα′

+ , wα′
− , . . . , wα−} is an I+(η)n-sequence. In the other case let t+, t− ≥ 0 be the length of 

the respective I+(η)n-sequences. Since wα is non trivial we must have t+ > 0 or t− > 0. Assume t+ > 0
(analogously, for t+ = 0 and t− > 0). Therefore {wα+ , . . . , wat+−1 , wα′

− , . . . , wα−} is an I+(η)n-sequence. In 
next Proposition we deal with the case that wα′

+ − wα′
− is neither trivial nor zero.

Proposition 5.20. Let wα =
∏t

i=1 w(1,γi,δi)
∏n

i=t+1 w(2,γi,δi) −
∏t

i=1 w(1,γ′
i,δ

′
i)
∏n

i=t+1 w(2,γ′
i,δ

′
i) be a non 

trivial suitable n-binomial with n ≥ 3. Therefore, there exist I+(η)n-sequences {wα+ , . . . , wα+
r } and 

{wα− , . . . , wα−
u } with wα+

r =
∏t

i=1 w(1,γ1
i ,δ

1
i )
∏n

i=t+1 w(2,γ1
i ,δ

1
i ) and wα−

u =
∏t

i=1 w(1,γ2
i ,δ

2
i )
∏n

i=t+1 w(2,γ2
i ,δ

2
i )

satisfying γ1
i = γ2

i for all i = 1, . . . , n.
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Proof. May we assume that γ1 ≥ · · · ≥ γt, γt+1 ≥ · · · ≥ γn (respectively γ′
i) and let γ
 be first such that 

γj �= γ′
j . May we also assume that γ
 = γ′


 + s with s > 0. Hence 
∑

j 
=
 γj + s =
∑

j 
=
 γ
′
j . Let γi be the first 

such that γi < γ′
i with i > � and let si > 0 be such that γi + si = γ′

i. Now we discuss two cases.

Case 1: s ≤ si. According to Lemma 5.19 when doing γ
−s and γi+s the minimum bound problem (shortly, 
mbp) does not take place and the maximum bound problem (shortly, MBP) appears when r
d −3γ
, rid −3γi
are even, s is odd, δ
 = r�d−3γ�

2 and δi = rid−3γi

2 . If MBP does not appear we define,

wa2 = w(r1,γ1,δ1)w(r2,γ2,δ2) · · ·w(r�,γ�−s,δ̄�) · · ·w(ri,γi+s,δ̄i) · · ·w(rn,γn,δn)

and then {wa+ , wa2} is an I+(η)n-sequence and wa2 , wa− share the same γ in position �. We assume that 
the MBP appears and we divide the discussion in several subcases based on the parity of d.

1.1 ε = 0, γ
 and γi even and s odd.
1.1 ε = 1, rl = ri = 2, γ
 and γi even and s odd.
1.3 ε = 1, rl = ri = 1, γ
 and γi odd and s odd.
1.4 ε = 1, rl = 1, ri = 2, γ
 odd, γi even and s odd.

We treat 1.1, the remainder cases are similar and we leave them to the reader. We will modify both wa+

and wa− . When doing γ
 − (s + 1) and γi + (s + 1) the MBP disappears. Since γ
 and γi are even and s is 
odd we get that γ′


 is odd. If γ′
i < rik

′ + 	 riρ
3 
 when doing γ′


 − 1 and γ′
i + 1 the mbp does not appear and 

we set

wa2 = w(r1,γ1,δ1) · · ·w(r�,γ�−(s+1),δ̄�) · · ·w(ri,γi+s+1,δ̄i) · · ·w(rn,γn,δn)

wa′
2 = w(r1,γ′

1,δ
′
1) · · ·w(r�,γ′

�−1,δ̄′�)
· · ·w(ri,γ′

i+1,δ̄′i) · · ·w(rn,γ′
n,δ

′
n).

{wα+ , wa2} and {wa′
2 , wα′

−} are I+(η)n-sequences and wa2 , wa′
2 share the same γ in position �.

If γ′
i = rik

′ + 	 riρ
3 
, there is no problem when doing γ′


 + 1, γ′
i − 1 and set

wa2 = w(r1,γ1,δ1) · · ·w(r�,γl�(s−1),δ̄�) · · ·w(ri,γi+(s−1),δ̄i) · · ·w(rn,γn,δn)

wa2′ = w(r1,γ1,δ1) · · ·w(r�,γ′
�+1,δ̄′�)

· · ·w(ri,γ′
i−1,δ̄′i) · · ·w(rn,γ′

n,δ
′
n).

In any case wa2 and wα− (resp. wa′
2) share the same γ in position �.

Case 2: s > si. Arguing as in Case 1 we distinguish cases 1.1, 1.2, 1.3 and 1.4 and we treat the first one. 
Assume γ
, γi even, s odd and δ
 = r�d−3γ�

2 , δi = rid−3γi

2 . Hence now γ′
i is odd and we can argue as in 

Case 1 when doing γ′

 + 1 and γ′

i − 1. If s > si, then wa2 and wα− (resp. wa′
2) verifies the same hypothesis 

that wα+ and wα− but now we have γ
 − si and γ′

 (resp. γ
 − (si − 1) and γ′


 + 1) in position �. Next we 
apply the same strategy to wa2 and so on until in step t > 1 the resulting monomial wat verifies Case 1.

The result follows by iterating the above argument. �
Remark 5.21. Notice that not necessarily wα+

r −w
α−
u is a non trivial suitable n-binomial. In which case we 

obtain an In-sequence from wα+ to wα− arguing as below Proposition 5.16.

Example 5.22. In Example 5.18 (2), we had w(0,0,0)w(1,0,0)w(2,0,5)w(3,5,0)−w2
(1,1,0)w(2,1,3)w(2,2,2) and we have 

build the I+(η)4-sequence

{w(0,0,0)w(1,0,0)w(2,0,5)w(3,5,0), w(1,0,1)w
2
(1,0,2)w(3,5,0), w

2
(1,0,2)w(2,2,1)w(2,3,0)}.
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Now we apply Proposition 5.20 to the non trivial 4-binomial

w2
(1,1,0)w(2,1,3)w(2,2,2) − w2

(1,0,2)w(2,2,1)w(2,3,0).

We have γ1 = γ2 = 0, γ3 = 2, γ4 = 3 and γ′
1 = γ′

2 = 1, γ3 = 1, γ4 = 2, with γ1 =
γ′
1 + 1. The first γi < γ′

i corresponds to γ3 with s3 = 1. Then we choose the suitable 2-binomial 
w(1,1,0)w(2,1,3) − w(1,0,1)w(2,2,2) and we define wa2 := w(1,0,1)w(1,1,0)w

2
(2,2,2). Note the γ’s involved in 

wa2 by γ̃i, i = 1, 2, 3, 4. Now γ̃1 = γ′
1, ̃γ2 = 1, γ̃3 = γ̃4 = 2. The first γ̃i > γ′

i is γ2 =
γ′
2 + 1 and the first γj < γ′

j with j ≥ 3 is γ4 = 2 with s4 = 1. Then we choose the suit-
able 2-binomial w(1,1,0)w(2,2,2) − w(1,0,2)w(2,3,0) and we define wa3 := w(1,0,1)w(1,0,2)w(2,2,2)w(2,3,0). We 
have obtained an I+(η)4-sequence from w(0,0,0)w(1,0,0)w(2,0,5)w(3,5,0) to w2

(1,1,0)w(2,1,3)w(2,2,2). Precisely, 
{w(0,0,0) w(1,0,0) w(2,0,5) w(3,5,0), w(1,0,1) w

2
(1,0,2) w(3,5,0), w2

(1,0,2) w(2,2,1) w(2,3,0), w(1,0,1) w(1,0,2) w(2,2,2) w(2,3,0),

w(1,0,1)w(1,1,0)w
2
(2,2,2), w

2
(1,1,0)w(2,1,3)w(2,2,2)}.

Finally we consider wα = wα+ − wα− a non trivial suitable n-binomial as in Proposition 5.20. Assume 
that the resulting suitable n-binomial wα+

r − w
α−
u =

∏t
i=1 w(1,γ1

i ,δ
1
i )
∏n

i=t+1 w(2,γ1
i ,δ

1
i ) −

∏t
i=1 w(1,γ2

i ,δ
2
i ) ×∏n

i=t+1 w(2,γ2
i ,δ

2
i ) is non trivial and non zero. To prove Theorem 5.6 it is enough now to show that wα+

r −w
α−
u

admits an I+(η)n-sequence. wα+
r − w

α−
u verifies γ1

i = γ2
i for all 1 ≤ i ≤ n. For each δ1

i < δ2
i , 1 ≤ i ≤ n, set 

ai = δ2
i − δ1

i and bi = 0, otherwise set ai = 0 and bi = δ1
i − δ2

i . Therefore δ1
1 + a1 − b1 + · · ·+ δ1

n + an − bn =
δ2
1 + · · · + δ2

n, which implies that a1 + · · · + an = b1 + · · · + bn. May we assume that a1 > 0. Hence 
δ1
2 + · · · + δ1

n > δ2
2 + · · · + δ2

n. Without lost of generality we can assume that δ1
i > δ2

i , i = 2, . . . , n. Then 
bi > 0 and δ1

i + bi = δ2
i , i = 2, . . . , n. So a1 ≤ b2 + · · · + bn and we can consider ci ≤ bi such that 

a1 = c2 + · · · + cn. Set

wa2 = w(r1,γ1
1 ,δ

1
1+c2)w(r2,γ1

2 ,δ
1
2−c2)w(r3,γ1

3 ,δ
1
3) · · ·w(rn,γ1

n,δ
1
n).

{wα+
r , wa2} is an I+(η)n-sequence. If δ1

2 − c2 = δ2
2 , then {wα+

r , wa2 , wα−
u } is an I+(η)n-sequence and we 

finish. Else inductively set

2 < i ≤ n, wai = w(r1,γ1
1 ,δ

1
1+c2+···+ci)w(r2,γ1

2 ,δ
1
2−c2) · · ·w(ri,γ1

i ,δ
1
i−ci) · · ·w(ri+1,γ1

i+1,δ
1
i+1) · · ·w(rn,γ1

n,δ
1
n).

Since at some point 2 ≤ t ≤ n we achieve wat − w
α−
u trivial, we construct an I+(η)n-sequence 

{wα+
r , wa2 , . . . , wat , wα−

u } and the proof of Theorem 5.6 is completed. �
6. Final remarks and open problems

In the previous sections we have explicitly described I(Xd). Next goal will be to compute a minimal 
free resolution of I(Xd) or at least its graded Betti numbers. Using the program Macaulay2 [11], we have 
computed a minimal free R-resolution of the ideal of the GT -threefold Xd for d = 4, 5, 6 and we have got:

d = 4 :

0 → R(−8)9 → R(−7)48 → R(−6)100 → R(−4)6 ⊕R(−5)96 →
R(−3)16 ⊕R(−4)36 → R(−2)12 → R → R/IX4 → 0

d = 5 :

0 → R(−10)16 → R(−9)120 → R(−8)385 → R(−7)680 → R(−6)700 → R(−4)15 ⊕R(−5)392 →
R(−3)48 ⊕R(−4)85 → R(−2)20 ⊕R(−3)8 → R → R/IX5 → 0
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d = 6 :

0 → R(−14)4 ⊕R(−15)2 → R(−13)108 ⊕R(−14)7 → R(−12)803 → R(−11)2850 → R(−10)6237 →
R(−9)9064 → R(−7)6 ⊕R(−8)8811 → R(−6)258 ⊕R(−7)5352 → R(−5)844 ⊕R(−6)1638 →

R(−4)796 ⊕R(−5)184 → R(−3)322 ⊕R(−4)13 → R(−2)57 → R → R/IX6 → 0.

It follows from [14, Proposition 13] that Xd is arithmetically Cohen-Macaulay (see also [3] and [13]). We 
would like to address the following problem.

Problem 6.1. Find explicitly a minimal free R-resolution of I(Xd) for all d ≥ 4.
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