期刊论文详细信息
JOURNAL OF PURE AND APPLIED ALGEBRA 卷:224
Umbral calculus in Ore extensions
Article
Benouaret, Chahrazed1  Salinier, Alain2 
[1] USTHB, Fac Math, BP 32, El Alia 16111, Alger, Algeria
[2] Univ Limoges, Pole Math & Informat Limoges, Lab XLIM, UMR CNRS 7252, F-87060 Limoges, France
关键词: Coalgebra;    Difference algebra;    Ore extensions;    Pincherle calculus;    Translation operators;    Umbral calculus;   
DOI  :  10.1016/j.jpaa.2019.06.017
来源: Elsevier
PDF
【 摘 要 】

The aim of the paper is to show the existence of some ingredients for an umbral calculus on some Ore extensions, in a manner analogous to Rota's classical umbral calculus which deals with a univariate polynomial ring on a field of characteristic zero. For that, we introduce the notion of a quasi-derivation in order to specify Ore extensions on which building up this umbral calculus is possible. This allows in particular to define an action of the Ore extension on tensor products of modules. We develop also a Pincherle calculus for operators and we define a coalgebra structure on the Ore extension. (C) 2019 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jpaa_2019_06_017.pdf 597KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次