| JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS | 卷:323 |
| Theoretical modelling of physiologically stretched vessel in magnetisable stent assisted magnetic drug targeting application | |
| Article | |
| Mardinoglu, Adil2  Cregg, P. J.3  Murphy, Kieran3  Curtin, Maurice4  Prina-Mello, Adriele1,4  | |
| [1] Univ Dublin Trinity Coll, CRANN, Dublin 2, Ireland | |
| [2] Waterford Inst Technol, TSSG, Waterford, Ireland | |
| [3] Waterford Inst Technol, SEAM Ctr, Mat Characterisat & Proc Grp, Waterford, Ireland | |
| [4] Univ Dublin Trinity Coll, Trinity Ctr Bioengn, Dublin 2, Ireland | |
| 关键词: Magnetic drug targeting; Stretch vessel; Magnetic nanoparticle; Simulation; Dipole-dipole interaction; Hydrodynamic interaction; Magnetizable stent; | |
| DOI : 10.1016/j.jmmm.2010.09.028 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
The magnetisable stent assisted magnetic targeted drug delivery system in a physiologically stretched vessel is considered theoretically. The changes in the mechanical behaviour of the vessel are analysed under the influence of mechanical forces generated by blood pressure. In this 2D mathematical model a ferromagnetic, coiled wire stent is implanted to aid collection of magnetic drug carrier particles in an elastic tube, which has similar mechanical properties to the blood vessel. A cyclic mechanical force is applied to the elastic tube to mimic the mechanical stress and strain of both the stent and vessel while in the body due to pulsatile blood circulation. The magnetic dipole-dipole and hydrodynamic interactions for multiple particles are included and agglomeration of particles is also modelled. The resulting collection efficiency of the mathematical model shows that the system performance can decrease by as much as 10% due to the effects of the pulsatile blood circulation. (C) 2010 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jmmm_2010_09_028.pdf | 318KB |
PDF