期刊论文详细信息
PATTERN RECOGNITION 卷:45
Iterative bicluster-based least square framework for estimation of missing values in microarray gene expression data
Article
Cheng, K. O.1  Law, N. F.1  Siu, W. C.1,2 
[1] Hong Kong Polytech Univ, Dept Elect & Informat Engn, Ctr Signal Proc, Hong Kong, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Dept Elect & Informat Engn EIE, Hong Kong, Hong Kong, Peoples R China
关键词: Missing value imputation;    Biclustering;    Iterative estimation;    Gene expression analysis;   
DOI  :  10.1016/j.patcog.2011.10.012
来源: Elsevier
PDF
【 摘 要 】

DNA microarray experiment inevitably generates gene expression data with missing values. An important and necessary pre-processing step is thus to impute these missing values. Existing imputation methods exploit gene correlation among all experimental conditions for estimating the missing values. However, related genes coexpress in subsets of experimental conditions only. In this paper, we propose to use biclusters, which contain similar genes under subset of conditions for characterizing the gene similarity and then estimating the missing values. To further improve the accuracy in missing value estimation, an iterative framework is developed with a stopping criterion on minimizing uncertainty. Extensive experiments have been conducted on artificial datasets, real microarray datasets as well as one non-microarray dataset. Our proposed biclusters-based approach is able to reduce errors in missing value estimation. (C) 2011 Elsevier Ltd. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_patcog_2011_10_012.pdf 721KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次