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DNA microarray experiment inevitably generates gene expression data with missing values. An

important and necessary pre-processing step is thus to impute these missing values. Existing

imputation methods exploit gene correlation among all experimental conditions for estimating the

missing values. However, related genes coexpress in subsets of experimental conditions only. In this

paper, we propose to use biclusters, which contain similar genes under subset of conditions for

characterizing the gene similarity and then estimating the missing values. To further improve the

accuracy in missing value estimation, an iterative framework is developed with a stopping criterion on

minimizing uncertainty. Extensive experiments have been conducted on artificial datasets, real

microarray datasets as well as one non-microarray dataset. Our proposed biclusters-based approach

is able to reduce errors in missing value estimation.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The DNA microarray technology [1] allows acquisition of gene
expression data from ten thousands of genes under hundreds of
experimental conditions. The data is useful for various applica-
tions such as cellular processes analysis, gene functions predic-
tion and diseases diagnoses [2–5]. However, the gene expression
data is often incomplete in that some values are lost because of
image corruption, dust or scratches on the slides and experi-
mental errors. As many subsequent analysis tools work on
complete datasets only, recovery of missing values is necessary
[6,7]. A straightforward approach is to repeat the experiment; but
this might not be feasible because of economic reasons or some-
times limitations of samples. Thus, computation based estimation
becomes necessary and crucial.

Early approaches to deal with missing entries are simply to
replace them with zeros or row averages. Later, coherence inside the
gene expression data is used for their estimation. There are mainly
two ways to explore the coherence information, namely the global
and the local approaches [8]. The global approaches assume a global
covariance structure in all genes [9,10] while the local approaches
exploit correlations among certain genes only [11–14].

For both local and global approaches, a measure of gene
similarity is critical for finding the coherence structure. Often, the
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gene similarity is measured based on the similarity of the expression
profiles across all experimental conditions [15]. In reality, genes are
co-expressed under certain conditions only [16–20]. Hence the gene
similarity should be measured by considering only those related
experimental conditions, rather than all the conditions. In this
article, we incorporate this biclustering idea into the framework of
local least squares imputation (LLSimpute) [12] for missing value
estimation. In particular, genes and conditions are grouped alter-
nately based on a weighted distance and correlation, respectively. A
regression model is then used for least square based missing value
estimation. To further improve the selection of coherent genes and
correlated conditions, an iterative framework is developed. A stop-
ping criterion that minimizes the uncertainty in estimation is
introduced to improve the convergence of the proposed algorithm.

This paper is organized as follows. In Section 2, the LLSimpute
for missing value estimation is reviewed. Section 3 then presents
the proposed algorithm. In Section 4, the proposed algorithm is
evaluated on artificial datasets, real microarray datasets as well as
a non-microarray dataset. Besides, issues such as convergence
and parameters sensitivity are also addressed. Finally, a conclu-
sion is drawn in Section 5.
2. Review—local least square imputation

Data from microarray experiments is frequently given as a
large matrix showing expression levels of genes (rows) under
different experimental conditions (columns) [1]. It is estimated
that the data can contain 10% missing values and in some
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Fig. 1. Gene expression levels of a set of similar genes in three selected

experimental conditions in the Ronen dataset. The number of similar genes is

101. The three experimental conditions are ‘‘glucose pulse (2 g/l) on galactose

chemostat at 10 min’’ (condition A), ‘‘glucose pulse (2 g/l) on galactose chemostat

at 15 min’’ (condition B) and ‘‘glucose pulse (2 g/l) on galactose chemostat at

180 min’’ (condition C).
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datasets, up to 90% of genes have at least one missing values. The
local least squares imputation (LLSimpute) [12] is a popular state-
of-the-art method that explores local coherence information in
the gene expression data for missing value estimation. For each
target gene which contains at least one missing value, k most
similar genes are selected based on either Pearson correlation or
Euclidean distance. Then the missing values are estimated under a
least square framework. Let E be the expression matrix consisting
of m genes and n conditions. Denote the target gene with p

missing values as gT
t AR1�n. Without loss of generality, assume

that all the missing values are located in the first p conditions.
Hence

gT
t ¼ ða

T wT Þ ð1Þ

where aT AR1�p is a 1� p vector containing the p missing values
in the target gene and wT AR1�ðn�pÞ is a 1� (n�p) vector contain-
ing the non-missing values. To estimate aT, a regression model in
the form of aT

¼wTY is adopted where the matrix Y contains the
regression coefficients. The regression coefficients are obtained
from the k similar genes under a least square framework. In
particular, columns of the k similar genes are re-arranged in a
manner similar to gT

t as follows:

gT
s1

^

gT
sk

0
BB@

1
CCA¼ ðB AÞ ð2Þ

where gT
si
AR1�n for i¼1, 2, y, k denotes the k similar genes,

BARk�p and AARk�ðn�pÞ denote respectively the expression values
in the first p conditions and remaining (n�p) conditions of the
similar genes. The regression coefficients are obtained from these
k similar genes by minimizing the following equation:

argmin
Y

:AY�B:2 ð3Þ

The closed form solution to Eq. (3) can be written as

Ŷ¼AþB ð4Þ

where Aþ is the pseudoinverse of A. Hence, the missing values in
the target gene can be approximated as

âT
¼wT Ŷ¼wT AþB ð5Þ

In LLSimpute, k is the only parameter. A heuristic approach
for its estimation has been proposed in [12]. First, some of the
non-missing values in the expression matrix are considered to be
missing. Then, the value of k is obtained by minimizing the
normalized root mean square error (NRMSE) that is defined as

NRMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ði,jÞA S

ðaij�âijÞ
2=9S9

q� �
=s ð6Þ

where aij is the actual value in the data matrix at position (i, j),
âij is the corresponding estimated value, S is a set of missing
entries, 9S9 is the cardinality of the set S and s is the standard
deviation of the actual values at positions in S.
3. Proposed algorithm for missing value estimation

In LLSimpute, a group of genes that is similar to the target gene
is identified so that the group can be used to estimate the missing
entries in the target gene. The gene similarity is measured by
considering the similarity of the expression profiles across all
experimental conditions. However, studies have found that gene
profiles are similar under some experimental conditions only. For
instances, it was found in a yeast expression dataset that genes
express more coherently in a subset of conditions than in the whole
set of conditions [16]. Comparing with traditional clustering
approaches, simultaneously clustering in both genes and
experimental conditions (i.e., biclustering) is more effective in
identifing patterns with similar gene functions [18]. Biclustering
also performs better sample classification than clustering [21].

Further evidence can be obtained by studying a set of similar
genes in a yeast expression matrix (called Ronen dataset as
described in Section 4) [22]. The dataset has 5342 genes and 26
experimental conditions. The experimental conditions are glucose
pulse (2 g/l) from 10 min to 240 min and glucose pulse (0.2 g/l)
from 2 min to 150 min. Three experimental conditions considered
are ‘‘glucose pulse (2 g/l) on galactose chemostat at 10 min’’
(condition A), ‘‘glucose pulse (2 g/l) on galactose chemostat at
15 min’’ (condition B) and ‘‘glucose pulse (2 g/l) on galactose
chemostat at 180 min’’ (condition C). Fig. 1 shows the expression
levels of a set of similar genes in these three conditions. It can be
observed that the responses in conditions A and B are highly
correlated but the responses in condition C appear to be uncorre-
lated with the other two conditions. In fact, the correlation value
between conditions A and B is 0.7860 while that between
conditions A and C is 0.0390. Hence, the set of genes are similar
only under conditions A and B, but not in condition C. The finding
is consistent with the nature of experimental conditions that the
measurements for conditions A and B were taken with only a few
minutes apart but that for condition C was taken almost 3 h later.

Fig. 1 provides evidence for the assumption that genes are
coexpressed under some conditions only. If one considers the
coherence across the entire experimental conditions, local coher-
ence might not be captured correctly which in turn affects the
accuracy in the missing value estimation. Biclusters, which are
coherent clusters consisting of correlated genes under some
experimental conditions, should thus be used for characterizing
the local coherence information. In this part, we incorporate the
biclustering idea in the LLSimpute so that gene similarity is
measured within the correlated conditions only.

3.1. Bicluster-based least square framework

Similar to the LLSimpute, a set of k similar genes is first identified
using the Euclidean distance. From these k similar genes, coherence
information among different conditions is estimated. Note that
condition i and condition j can have very different correlation with
other conditions. Thus, correlation among different conditions for
each missing value in the target gene should be estimated sepa-
rately. Hence, we have

R¼ BT A ð7Þ

Using R, the set of k similar genes for the jth missing value of
the target gene is reselected from the expression matrix by
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considering a weighted Euclidean distance. In particular, the
similarity between the target gene gt and the other gene gs is
calculated for the jth missing value as

djðgt ,gsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

v ¼ pþ1
rjðv�pÞ2½gtðvÞ�gsðvÞ�

2

r . ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn�p

v ¼ 1
rjðvÞ

2
q

ð8Þ

where rjðvÞ is the (j, v)th element of R and g(v) is the vth element
of the vector g. Using Eq. (8), coherence among genes in some
related experimental conditions is considered for selecting the k

similar genes. Then, in estimating the jth missing value of the
target gene, the ‘‘uncorrelated’’ conditions are removed in the

least square framework. Let rj,max ¼ max
vA f1,...,n�pg

9rjðvÞ9, the condi-

tions are said to be related if 9rjðvÞ9ZT0rj,max where T0 is a pre-set

threshold. After removing all the ‘‘uncorrelated’’ conditions, the
target gene can be written as

gT
t ¼ ðaj wT

j Þ ð9Þ

where aj is the jth missing value in the target gene, and wT
j

denotes the non-missing values from the columns that are
correlated to the jth column in the target gene. Columns of the
k similar genes can be re-arranged and truncated in the same

manner as gT
t . Hence, we have

gT
s1

^

gT
sk

0
BB@

1
CCA¼ ðbj AjÞ ð10Þ

where bj is the jth column of the data and Aj is a matrix consisting
of the correlated columns of the similar genes. The regression
coefficients are obtained from these k similar genes using a least
square framework as

argmin
y

:Ajy�bj:2 ð11Þ

Thus, the jth missing value can be estimated as

aj ¼wT
j ŷj ¼wT

j Aþj bj ð12Þ

The above estimation can be repeated until all the p missing
values in the target gene are obtained.

Our proposed bicluster-based missing value estimation
approach has two parameters, the number of similar genes k

and the threshold for the correlation between columns T0. These
two parameters are determined automatically by employing a
heuristic approach using simulated missing values as in [12]. The
simulated missing values are non-missing values, which are
randomly selected to be missing values. Since the actual values
of the simulated missing values are known, the estimation error
can be calculated. The values of k and T0 are determined as those
giving the minimum NRMSE for the simulated missing values. In
order to minimize the computational cost, k is estimated first and
then used to determine T0.

3.2. Iterative application of the proposed bicluster-based imputation

An iterative version of the LLSimpute called ILLSimpute was
developed in [23]. It aims to improve the selection of k similar
genes and thus the estimation of missing values based on
estimates from the previous iteration. Experimental results have
demonstrated that the ILLSimpute can achieve an improvement of
more than 10% in NRMSE at a 10% missing rate as compared to the
LLSimpute. Following the same idea, the proposed bicluster-based
imputation is iteratively applied to refine the selection of k similar
genes and the correlated conditions so as to improve the esti-
mates of missing values. In the iterative framework, one of the
important considerations is the convergence rate. The study of
ILLSimpute suggests that direct modification for iteration results
in slow convergence and deviation from the optimal estimation
error [23]. In order to improve the convergence, we use the
concept of the uncertainty to update the estimates. In particular,
the estimates in the current iteration will replace that in the
previous iteration only if the uncertainty is decreased. The
uncertainty d is calculated as the half width of the prediction
interval [24] at a significant level of a, i.e.,

d¼ ta=2,m0�n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðwT

j ðA
T
j AjÞ

�1wjþ1Þŝ2
q

ð13Þ

where ta=2,m0�n0 is the t-value of the Student’s t distribution with
m0 �n0 degree of freedom, m0 is the number of rows of Aj, n0 is the
number of columns of Aj and ŝ2 is the unbiased estimator of noise
variance in the regression model, i.e.

ŝ2
¼ ðbj�AjŷjÞ

T
ðbj�AjŷjÞ=ðm

0�n0Þ: ð14Þ

A small d implies a small deviation of the estimate from its actual
value. Using Eq. (14), a reliable approximation can be achieved in the
statistical sense. Furthermore, the values of uncertainty form a non-
increasing sequence consisting of non-negative values. This implies
that the update of estimates tends to vanish and hence the estimated
values would converge. In the implementation, the iterative process
is terminated when the average change in estimates is insignificant.
In order to impose a further control on the number of iterations, the
maximum number of iterations can also be set.
4. Experimental results

Our proposed iterative bicluster-based least square estimation
is evaluated on two artificial datasets, and five real datasets. In
the first artificial dataset, there are twenty data matrices of size
360�30, which were initially generated with uniformly distrib-
uted random values in the range of �10 and 10. Then, twelve
30�12 biclusters were implanted into each of the data matrices
without row overlap. In total, there is 40% gene expression data
covered by the biclusters. Finally, 30 dB noise was added. The
second artificial dataset was generated in a similar way except
that the size of each bicluster is 30�18 so that the percentage of
bicluster-region in these data matrices is 60%. Since the bicluster
information is known, the artificial datasets allow a systematic
study of the proposed algorithm. Among the real datasets, four
are gene expression microarray data and one is non-microarray
data. The first two are cell cycle expression datasets of yeast
Saccharomyces cerevisiae (S. cerevisiae), Sp.alpha and Sp.cdc15,
which are synchronized using a factor and a cdc15 tempera-
ture-sensitive mutant, respectively [25]. The third microarray
dataset, Ogawa, is a non-time series dataset for the analysis of
phosphate accumulation and polyphosphate metabolism in
S. cerevisiae [26]. The fourth microarray dataset is called Bonen,
which contains two time series of yeast response to glucose
pulses in galactose-limited chemostats [22]. The sizes of the four
datasets Sp.alpha, Sp.cdc15, Ogawa and Bonen are 4489�18,
4381�24, 5783�8 and 5342�26, respectively, after removing
the genes with missing values. These four real datasets were used
to verify the performance of the proposed algorithm on micro-
array data. The last real dataset, Finance [27], is a non-microarray
dataset. It contains information about 200 French industries in
5 years duration and has a size of 650�36. Each row represents a
sample with 35 variables together with one output. The variables
involve several types of data; balance sheet, income statement
and market data while the output is the return of assets. The
purpose of this dataset is to study the potential application of the
proposed algorithm to non-microarray data.

In the experiments for artificial datasets, r % of values were set
to be missing randomly inside and outside the biclusters, where
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r¼1, 5, 10, 15, 20. The estimation was repeated five times for each
dataset to generate average results. For real datasets, the missing
values were distributed over the whole data as the ‘ground-truth’
biclusters are unknown. The estimation was repeated ten times
on the Sp.alpha, Sp.cdc15 and Bonen datasets; forty times on the
Ogawa and Finance datasets. Our proposed method is compared
with several existing algorithms including LLSimpute, Bayesian
principal component analysis (BPCA) [10] and ILLSimpute. Since
the convergence of ILLSimpute is poor, the best result among the
iterations is selected for comparison. The automatic parameter
estimation of ILLSimpute as well as the proposed method was
done for the first three iterations only so as to maintain a tradeoff
between the computational cost and performance. The accuracy
of missing value estimation is evaluated using an average of the
NRMSE defined by Eq. (6).
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Fig. 2. Average NRMSE in (a) the bicluster-region, (b) the non-bicluster-region and

(c) the whole data matrix achieved by BPCA, LLSimpute, ILLSimpute and our

proposed algorithm in the first artificial dataset (with 40% bicluster-region) for

various missing rates. The error bars indicate the standard error of mean in the

experiments.
4.1. Artificial datasets

Fig. 2 shows the average NRMSE at different regions (bicluster-
region, non-bicluster region and the overall expression matrix) for
the first artificial dataset with 40% bicluster-region under differ-
ent missing rates. From Fig. 2(a), we can see that our proposed
algorithm achieves the best NRMSE at all missing rates in
bicluster-region. The improvement over the other algorithms
can be attributed to the use of the regression strategy that
considers only the related experimental conditions. The improve-
ment is between 13.8% and 53.3% as compared to the other three
algorithms. The ILLSimpute attains its minimum NRMSE at the
first iteration at all the missing rates. Hence ILLSimpute has
essentially the same performance as LLSimpute. This demon-
strates that the iterative framework is not effective in
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Fig. 3. Average NRMSE in (a) the bicluster-region, (b) the non-bicluster-region and

(c) the whole data matrix achieved by BPCA, LLSimpute, ILLSimpute and our

proposed algorithm in the second artificial dataset (with 60% bicluster-region) for

various missing rates. The error bars indicate the standard error of mean in the

experiments.
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characterizing the bicluster information due to the use of cluster-
ing. BPCA has the worst NRMSE because it considers the data
correlation over the whole matrix instead of the coherent data. In
the non-bicluster-region, on the contrary, the BPCA has the best
performance and the performance of our proposed algorithm is
comparable with that of LLSimpute and ILLSimpute. The main
reason is that the data are generated independently so the idea of
finding correlated genes and correlated columns is not valid. In
fact, such data do not have any significant bicluster pattern. The
use of the bicluster models would bias the estimates against the
underlying random model. In terms of the overall data matrix as
shown in Fig. 2(c), our proposed algorithm outperforms LLSim-
pute and ILLSimpute at the missing rates between 5% and 20%.
Comparing with BPCA, the proposed algorithm has higher
overall NRMSE because the proportion of the bicluster region is
lower than that of the non-bicluster region. The improvement in
the bicluster region cannot compensate for the deterioration in
the non-bicluster region. However, when the missing rate
increases, the NRMSE of the proposed algorithm gets close to
that of BPCA.

Results for the second artificial dataset with 60% bicluster
region are shown in Fig. 3. As in the first artificial dataset, the use
of the biclustering idea makes our proposed algorithm achieving
the lowest NRMSE at all the missing rates in the bicluster region.
The reduction in NRMSE is between 12.1% and 42.5%. Although
the proposed algorithm is not the best estimation method in the
non-bicluster region, its NRMSE is always the lowest when the
NRMSE is considered over the whole matrix. The improvement
using the proposed algorithm is between 2.0% and 4.5% in the
overall NRMSE. Hence, if the local coherent structure becomes
more significant as in the second artificial dataset, we can see that
our proposed algorithm outperforms the other three algorithms
apparently. In next section, experimental results on real datasets
are discussed.
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Fig. 4. Average NRMSE of BPCA, LLSimpute, ILLSimpute and the proposed algorithm at d

and (d) Bonen. The error bars indicate the standard error of mean in the experiments.
4.2. Real datasets

The average NRMSE against missing rate for the four real
microarray datasets, namely Sp.alpha, Sp.cdc15, Ogama and
Ronen is plotted in Fig. 4. For the datasets Sp.alpha and Sp.cdc15,
the proposed algorithm outperforms BPCA and LLSimpute in all
the cases with significant improvement at mid and high missing
rates. The overall improvement over BPCA is 6.4% and 4.2% for
datasets Sp.alpha and Sp.cdc15, respectively. Compared with
LLSimpute, the proposed algorithm reduces the NRMSE by 9.3%
and 10.6% for datasets Sp.alpha and Sp.cdc15, respectively.
ILLSimpute also demonstrates higher performance than BPCA
and LLSimpute. This implies that iterative framework can refine
and improve the estimates of missing values. Our proposed
algorithm has lower NRMSE than ILLSimpute at mid and high
missing rates (10–20%) for the two cell-cycle datasets.

For the other two microarray datasets Ogama and Bonen, our
proposed algorithm again shows better performance than all the
other algorithms. In Ogama dataset, a large improvement over
ILLSimpute (the second best algorithm on average) is found at low
to mid missing rates instead of high missing rates. When missing
rate increases, there are fewer correlated conditions available for
estimation so that the performance of the proposed method
becomes close to that of ILLSimpute, which also uses local least
square estimation but with gene clustering only. In Bonen dataset,
ILLSimpute and LLSimpute essentially have the same perfor-
mance. Thus the iterative framework using clustering cannot
improve the missing value estimation. However, our proposed
method that uses the biclustering under an iterative framework is
able to achieve the lowest NRMSE for all the missing rates.

Fig. 5 illustrates the performance on the Finance dataset. The
proposed algorithm has lower NRMSE than the other three
algorithms at missing rates 5–20%. The results suggest that even
for non-microarray datasets, promising performance can still be
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achieved if the data correlation fits our assumption. If the data
correlation model is not modeled by biclusters, modifications on
the proposed algorithm are required to adapt to the appropriate
coherent patterns in the dataset. A detailed study of the proposed
algorithm on different data correlation model will be investigated
in future.
4.3. Convergence analysis

One of the concerns on iterative algorithms is the convergence,
i.e. whether the estimates finally remain unchanged at certain
values and whether the values produce the lowest error. As
discussed in Section 3.2, the estimates of the proposed algorithm
are enforced to converge to certain values, which are optimal in
the statistical sense so that the prediction error is likely to be the
lowest. In order to study the convergence rate, mean absolute
difference (MAD) between the current and previous estimates of
missing values is calculated in iterations from 2 to 25.
Fig. 6(a) illustrates the MAD for the real dataset Sp.alpha at 20%
missing rate. The MAD of the proposed algorithm is always
decreasing and becomes stable within 25 iterations. As ILLSim-
pute lacks a control on convergence, the MAD tends to take longer
time to drop. Furthermore, there is even a crest at around 10
iterations and the MAD cannot drop below the threshold after 25
iterations. Fig. 6(b) shows the NRMSE of the estimates at iterations
up to 25 for the dataset Sp.alpha at a missing rate of 20%. In general,
the update criterion based on the prediction interval allows the
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proposed algorithm to improve the estimation accuracy. For ILL-
Simpute, the NRMSE, however, may increase substantially after it
passes the minimum point.

In addition to the real dataset, the convergence in artificial
datasets is also studied. Fig. 7(a) and (b) shows the MAD and NRMSE
in the second artificial datasets (with 60% bicluster-region) at the
missing rate of 20%, respectively. As in the experiments on the real
dataset Sp.alpha, the estimates by the proposed algorithm converge
in both MAD and NRMSE. On the other hand, the convergence
problem of ILLSimpute becomes more serious in the artificial dataset
that there is an increasing trend for both MAD and NRMSE after 25
iterations. This further confirms the significance of the proposed
convergence control in the iterative framework, especially at high
missing rates.

4.4. Parameters analysis

As discussed in Section 3.2, our proposed algorithms have two
parameters: the number of similar genes k and the threshold for
the correlation between columns T0. Although our proposed
algorithm has an automatic strategy to select these parameters,
it is important to study the sensitivity of the proposed algorithm
to these parameters. In the following, the automatic parameter
selection strategy is not used so that k and T0 can be set manually.
Experiments were conducted on the real microarray dataset
Ronen at a missing rate of 10% with manually selected k and T0.
Fig. 8 shows the average NRMSE obtained with different values of
parameters. T0 is set to be between 0 and 0.8 while k is between
1 and 4096. It can be seen that k cannot be set to be too small. For
k to be larger than 64, the NRMSE did not have a large variation
for various T0. The minimum NRMSE is 0.5286 found at k¼512
and T0¼1�10�4. Using our automatic selection strategy, the
NRMSE is 0.5290, which is slightly larger than the minimum
error. Since the difference in NRMSE between the optimal para-
meter values and the selected parameter values is small, the
proposed algorithm together with the automatic parameters
selection strategy is practical for missing value estimation.
5. Conclusions

Existing state-of-the-art missing value algorithms always
measure the gene similarity by considering expression profiles
in all experimental conditions. As genes are correlated under
some experimental conditions only, a bicluster-based least square
algorithm is proposed for estimating missing values in gene
expression data. In our algorithm, biclusters, which consist of a
subset of genes that is similar in a subset of conditions, are
identified by performing clustering on genes and conditions
alternately. By applying a regression model to the found biclus-
ters, least square estimation can be performed without the
influence of unrelated genes and conditions. In addition to the
use of biclusters concept, the estimation is iterated so as to refine
the selection of similar genes/conditions, which in turn improves
the accuracy of the missing value estimation. One of the main
concerns in an iterative algorithm is convergence. The conver-
gence problem is solved by requiring the uncertainty to be
decreased with respect to the iterations. Unlike the existing
iterative approach, ILLSimpute, the proposed convergence control
can guarantee the algorithm to converge.

Experiments on two artificial datasets, and four real micro-
array datasets are conducted to study the performance of the
proposed algorithm on gene expression data. For the artificial
datasets, normalized root mean squared error (NRMSE) is calcu-
lated in bicluster-region, non-bicluster-region and over the whole
data matrix. Experimental results show that the proposed algo-
rithm has prominent improvement in the bicluster-region
compared with BPCA, LLSimpute and ILLSimpute. For the real
microarray datasets, only NRMSE over the whole matrix was
studied as the ground truth biclusters are not available. The
overall performance of the proposed algorithm generally outper-
forms the three existing algorithms. Since ILLSimpute also adopts
an iterative approach, its performance is the closest to the
proposed algorithm among the three existing algorithms.
However, it cannot fully exploit the data correlation due to the
use of clustering. Furthermore, ILLSimpute suffers from the conver-
gence problems. Experimental results on artificial and real datasets
show that ILLSimpute did not guarantee to converge. However,
owing to the use of the prediction intervals, the proposed algorithm
can always converge. In addition, an experiment on a financial
dataset was conducted to evaluate the performance of the proposed
algorithm on non-microarray data. The result is promising as our
proposed algorithm still outperforms the other three algorithms.
Hence, our proposed algorithm is applicable to other datasets as
long as the data correlation model fits with our assumption. In the
future, we will extend our algorithm so that it can be applied to
other data correlation model.
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