期刊论文详细信息
PATTERN RECOGNITION 卷:103
Handling Gaussian blur without deconvolution
Article
Kostkova, Jitka1  Flusser, Jan1  Lebl, Matej1  Pedone, Matteo2 
[1] Czech Acad Sci, Inst Informat Theory & Automat, Vodarenskou Vezi 4, Prague 18208 8, Czech Republic
[2] Univ Oulu, Ctr Machine Vis Res, Dept Comp Sci & Engn, FI-90014 Oulu, Finland
关键词: Gaussian blur;    Semi-group;    Projection operator;    Blur invariants;    Image moments;    Affine transformation;    Combined invariants;   
DOI  :  10.1016/j.patcog.2020.107264
来源: Elsevier
PDF
【 摘 要 】

The paper presents a new theory of invariants to Gaussian blur. Unlike earlier methods, the blur kernel may be arbitrary oriented, scaled and elongated. Such blurring is a semi-group action in the image space, where the orbits are classes of blur-equivalent images. We propose a non-linear projection operator which extracts blur-insensitive component of the image. The invariants are then formally defined as moments of this component but can be computed directly from the blurred image without an explicit construction of the projections. Image description by the new invariants does not require any prior knowledge of the blur kernel parameters and does not include any deconvolution. The invariance property could be extended also to linear transformation of the image coordinates and combined affine-blur invariants can be constructed. Experimental comparison to three other blur-invariant methods is given. Potential applications of the new invariants are in blur/position invariant image recognition and in robust template matching. (C) 2020 Elsevier Ltd. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_patcog_2020_107264.pdf 2423KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:1次