NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS | 卷:433 |
Two-way multi-physics coupling for modeling high power RbCl isotope production targets | |
Article | |
O'Brien, E. M.1  Doster, J. M.2  Nortier, F. M.1  Olivas, E. R.1  Stokely, M. H.2,3  | |
[1] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA | |
[2] North Carolina State Univ, Dept Nucl Engn, Burlington Engn Labs 3140, 2500 Stinson Dr, Raleigh, NC 27695 USA | |
[3] BTI Targetry LLC, 1939 Evans Rd, Cary, NC 27513 USA | |
关键词: RbCl targetry; Thermal modeling; Multi-physics coupling; Isotope production; ANSYS; MCNP; High power targetry; | |
DOI : 10.1016/j.nimb.2018.07.022 | |
来源: Elsevier | |
【 摘 要 】
This work shows successful first application of two-way multi-physics coupling to model RbCl targets in a three-stacked target configuration used at Los Alamos National Laboratory's (LANL) Isotope Production Facility (IPF). Targets are known to melt at production level beam currents and as in-beam monitoring of the targets in this configuration is not possible, high-fidelity simulation has been utilized to gain insight into target thermal behavior. Thermal hydraulic modeling was performed with ANSYS CFX and particle transport with the Monte Carlo N-Particle (MCNP) code. Multi-physics coupling of these two codes was employed to fully capture the highly coupled nature of the problem physics. Both transient and equilibrium thermal hydraulic results were obtained using this process. The equilibrium thermal hydraulic results were then employed to predict measured Sr-82 yields in molten RbCl targets. This technique demonstrates promise as a tool to investigating, understanding, and enhancing high power targetry behavior and limitations.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_nimb_2018_07_022.pdf | 2324KB | download |