期刊论文详细信息
FOREST ECOLOGY AND MANAGEMENT 卷:427
Disentangling effects of key coarse woody debris fuel properties on its combustion, consumption and carbon gas emissions during experimental laboratory fire
Article
Zhao, Weiwei1  van Logtestijn, Richard S. P.1  van der Werf, Guido R.2  van Hal, Jurgen R.1  Cornelissen, Johannes H. C.1 
[1] Vrije Univ Amsterdam, Fac Sci, Dept Ecol Sci, Syst Ecol, NL-1081 HV Amsterdam, Netherlands
[2] Vrije Univ Amsterdam, Fac Sci, Dept Earth Sci, Earth & Climate Cluster, NL-1081 HV Amsterdam, Netherlands
关键词: Carbon cycling;    Greenhouse gas;    Plant species;    Wood combustion;    Wood decomposition;    Wood density;   
DOI  :  10.1016/j.foreco.2018.06.016
来源: Elsevier
PDF
【 摘 要 】

Coarse woody debris is a key terrestrial carbon pool, and its turnover through fire plays a fundamental role in global carbon cycling. Coarse dead wood fuel properties, which vary between tree species and wood decay stages, might affect its combustion, consumption and carbon gas emissions during fire, either directly or indirectly through interacting with moisture or ground-wood contact. Using controlled laboratory burns, we tried to disentangle the effects of multiple biotic and abiotic factors: tree species (one conifer and three hard wood species), wood decay stages, moisture content, and ground-wood contact on coarse wood combustion, consumption, and CO2 and CO emissions during fire. Wood density was measured for all samples. We found that, compared to the other tested factors, wood decay stages acted as a predominant positive driver increasing coarse wood flammability and associated CO2 and CO emissions during fire. Wood moisture content (30 versus 7%) moderately inhibited wood flammability with slight interaction with wood decay effects. Wood decay effects can be mainly attributed to the decreasing wood density as wood becomes more decomposed. Our experimental data provides useful information for how several wood properties, especially moisture content and wood decay stages, with wood density as the key underlying trait, together drive coarse wood carbon turnover through fire to the atmosphere. Our results will help to improve the predictive power of global vegetation climate models on dead wood turnover and its feedback to climate.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_foreco_2018_06_016.pdf 3419KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:0次