| QUATERNARY SCIENCE REVIEWS | 卷:248 |
| Paleoenvironments from robust loess stratigraphy using high-resolution color and grain-size data of the last glacial Krems-Wachtberg record (NE Austria) | |
| Article | |
| Sprafke, Tobias1  Schulte, Philipp2  Meyer-Heintze, Simon3  Haendel, Marc4  Einwoegerer, Thomas4  Simon, Ulrich4  Peticzka, Robert5  Schaefer, Christian3  Lehmkuhl, Frank2  Terhorst, Birgit3  | |
| [1] Univ Bern, Inst Geog, Hallerstr 12, CH-3012 Bern, Switzerland | |
| [2] Rhein Westfal TH Aachen, Dept Geog, Wullnerstr 5b, D-52056 Aachen, Germany | |
| [3] Univ Wurzburg, Inst Geog & Geol, D-97074 Wurzburg, Germany | |
| [4] Austrian Acad Sci, Inst Oriental & European Archaeol, Hollandstr 11-13, A-1020 Vienna, Austria | |
| [5] Univ Vienna, Dept Geog & Reg Res, Althanstr 14, A-1090 Vienna, Austria | |
| 关键词: Loess; Paleosol; Spectrophotometry; Granulometry; Paleoenvironment; Paleoclimate; Alpine foreland; Last Glacial Maximum; Late Pleistocene; Upper Paleolithic; | |
| DOI : 10.1016/j.quascirev.2020.106602 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
The complex interplay of dust sedimentation, pedogenesis, and erosion/reworking in the formation of loess-paleosol sequences (LPS) challenges paleoenvironmental proxies. Here we show that color and grain size are essential parameters characterizing loess profiles and support robust stratigraphies as a basis for reconstructions in the context of local geo-ecological and large-scale paleoclimatic evolution. Detailed paleoenvironmental records from the period since the arrival of anatomically modern humans to the last glacial maximum are scarce in the Alpine surroundings. The c. 7.5 m thick LPS Krems-Wachtberg, NE Austria, known for its well-preserved Upper Paleolithic context at a depth of 5.5 m, formed between 40 and 20 ka BP by quasi-continuous dust-sedimentation, interrupted by phases of incipient pedogenesis and local reworking. The new KW2015 composite is based on three sections studied and sampled at 2.5 cm resolution. Color and grain size data support a robust stratigraphy for reconstructions of the pedosedimentary evolution. The marked transition from oxidized to reduced paleosols of KW2015 around 34-35 ka corresponds to the Middle-to Upper Pleniglacial transition as part of a general cooling trend from marine isotope stage (MIS) 3 to 2, intensely modulated by millennial-scale climatic fluctuations as recorded in the Greenland ice core data. The distinct response of KW2015 to these trends highlights that reconstructing LPS evolution based on a robust stratigraphy is a prerequisite to paleoenvironmental proxy interpretation. (C) 2020 The Author(s). Published by Elsevier Ltd.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_quascirev_2020_106602.pdf | 8168KB |
PDF