期刊论文详细信息
PHYSICA D-NONLINEAR PHENOMENA 卷:239
Motion of spiral waves in the complex Ginzburg-Landau equation
Article
Aguareles, M.1  Chapman, S. J.2  Witelski, T.3 
[1] Univ Girona, Dept Informat & Matemat Aplicada, Escola Politecn Super, Girona 17071, Spain
[2] Univ Oxford, Math Inst, OCIAM, Oxford OX1 3LB, England
[3] Duke Univ, Dept Math, Durham, NC 27708 USA
关键词: Law of motion;    Asymptotic;    Pattern formation;    Nonlinear oscillation;    Spiral waves;    Complex Ginzburg-Landau;   
DOI  :  10.1016/j.physd.2009.12.003
来源: Elsevier
PDF
【 摘 要 】

Solutions of the general cubic complex Ginzburg-Landau equation comprising multiple spiral waves are considered. For parameters close to the vortex limit, and for a system of spiral waves with well-separated centres, laws of motion of the centres are found which vary depending on the order of magnitude of the separation of the centres. In particular, the direction of the interaction changes from along the line of centres to perpendicular to the line of centres as the separation increases, with the strength of the interaction algebraic at small separations and exponentially small at large separations. The corresponding asymptotic wavenumber and frequency are determined. These depend on the positions of the centres of the spirals, and so evolve slowly as the spirals move. (C) 2009 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_physd_2009_12_003.pdf 2745KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次