PHYSICA D-NONLINEAR PHENOMENA | 卷:414 |
Dynamics of spiral waves in the complex Ginzburg-Landau equation in bounded domains | |
Article | |
Aguareles, M.1  Chapman, S. J.2  Witelski, T.3  | |
[1] Univ Girona, IMAE, Ed P4,Campus Montilivi, Girona 17003, Spain | |
[2] Univ Oxford, Math Inst, Andrew Wiles Bldg,ROQ Woodstock Rd, Oxford OX2 6GG, England | |
[3] Duke Univ, Dept Math, Durham, NC 27708 USA | |
关键词: Law of motion; Asymptotic; Pattern formation; Nonlinear oscillation; Spiral waves; Complex Ginzburg-Landau equation; | |
DOI : 10.1016/j.physd.2020.132699 | |
来源: Elsevier | |
【 摘 要 】
Multiple-spiral-wave solutions of the general cubic complex Ginzburg-Landau equation in bounded domains are considered. We investigate the effect of the boundaries on spiral motion under homogeneous Neumann boundary conditions, for small values of the twist parameter q. We derive explicit laws of motion for rectangular domains and we show that the motion of spirals becomes exponentially slow when the twist parameter exceeds a critical value depending on the size of the domain. The oscillation frequency of multiple-spiral patterns is also analytically obtained. (c) 2020 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_physd_2020_132699.pdf | 2354KB | download |