期刊论文详细信息
PHYSICA D-NONLINEAR PHENOMENA 卷:414
Dynamics of spiral waves in the complex Ginzburg-Landau equation in bounded domains
Article
Aguareles, M.1  Chapman, S. J.2  Witelski, T.3 
[1] Univ Girona, IMAE, Ed P4,Campus Montilivi, Girona 17003, Spain
[2] Univ Oxford, Math Inst, Andrew Wiles Bldg,ROQ Woodstock Rd, Oxford OX2 6GG, England
[3] Duke Univ, Dept Math, Durham, NC 27708 USA
关键词: Law of motion;    Asymptotic;    Pattern formation;    Nonlinear oscillation;    Spiral waves;    Complex Ginzburg-Landau equation;   
DOI  :  10.1016/j.physd.2020.132699
来源: Elsevier
PDF
【 摘 要 】

Multiple-spiral-wave solutions of the general cubic complex Ginzburg-Landau equation in bounded domains are considered. We investigate the effect of the boundaries on spiral motion under homogeneous Neumann boundary conditions, for small values of the twist parameter q. We derive explicit laws of motion for rectangular domains and we show that the motion of spirals becomes exponentially slow when the twist parameter exceeds a critical value depending on the size of the domain. The oscillation frequency of multiple-spiral patterns is also analytically obtained. (c) 2020 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_physd_2020_132699.pdf 2354KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次