期刊论文详细信息
PHYSIOLOGY & BEHAVIOR 卷:106
Allostasis and addiction: Role of the dopamine and corticotropin-releasing factor systems
Article
George, Olivier1  Le Moal, Michel2  Koob, George F.1 
[1] Scripps Res Inst, Comm Neurobiol Addict Disorders, La Jolla, CA 92037 USA
[2] Univ Victor Segalen, INSERM, Neuroctr Magendie, Bordeaux, France
关键词: Dopamine;    CRF;    Stress;    CeA;    Extended amygdala;    VTA;    Drugs;    Dependence;    Motivation;    Craving;   
DOI  :  10.1016/j.physbeh.2011.11.004
来源: Elsevier
PDF
【 摘 要 】

Allostasis, originally conceptualized to explain persistent morbidity of arousal and autonomic function, is defined as the process of achieving stability through physiological or behavioral change. Two types of biological processes have been proposed to describe the mechanisms underlying allostasis in drug addiction, a within-system adaptation and a between-system adaptation. In the within-system process, the drug elicits an opposing, neutralizing reaction within the same system in which the drug elicits its primary and unconditioned reinforcing actions, while in the between-system process, different neurobiological systems that the one initially activated by the drug are recruited. In this review, we will focus our interest on alterations in the dopaminergic and corticotropin releasing factor systems as within-system and between-system neuroadaptations respectively, that underlie the opponent process to drugs of abuse. We hypothesize that repeated compromised activity in the dopaminergic system and sustained activation of the CRF-CRF1R system with withdrawal episodes may lead to an allostatic load contributing significantly to the transition to drug addiction. Published by Elsevier Inc.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_physbeh_2011_11_004.pdf 389KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:3次