期刊论文详细信息
NEUROCOMPUTING 卷:112
Classification of covariance matrices using a Riemannian-based kernel for BCI applications
Article
Barachant, Alexandre1,2  Bonnet, Stephane1  Congedo, Marco2  Jutten, Christian2 
[1] CEA LETI, F-38054 Grenoble, France
[2] Grenoble Univ, CNRS, GIPSA Lab, Team ViBS Vis & Brain Signal Proc, F-38402 St Martin Dheres, France
关键词: Brain-computer interfaces;    Covariance matrix;    Kernel;    Support vector machine;    Riemannian geometry;   
DOI  :  10.1016/j.neucom.2012.12.039
来源: Elsevier
PDF
【 摘 要 】

The use of spatial covariance matrix as a feature is investigated for motor imagery EEG-based classification in brain-computer interface applications. A new kernel is derived by establishing a connection with the Riemannian geometry of symmetric positive definite matrices. Different kernels are tested, in combination with support vector machines, on a past BCI competition dataset. We demonstrate that this new approach outperforms significantly state of the art results, effectively replacing the traditional spatial filtering approach. (C) 2013 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_neucom_2012_12_039.pdf 426KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次