POLYMER | 卷:91 |
Interfacial crystallization of isotactic polypropylene surrounding macroscopic carbon nanotube and graphene fibers | |
Article | |
Abdou, John P.1  Reynolds, Karina J.1  Pfau, Michaela R.1  van Staden, Justin1  Braggin, Gregory A.1  Tajaddod, Navid2  Minus, Marilyn2  Reguero, Victor3  Vilatela, Juan J.3  Zhang, Shanju1  | |
[1] Calif Polytech State Univ San Luis Obispo, Dept Chem & Biochem, San Luis Obispo, CA 93407 USA | |
[2] Northeastern Univ, Dept Mech & Ind Engn, Boston, MA 02115 USA | |
[3] IMDEA Mat Inst, Madrid 28906, Spain | |
关键词: Interfacial crystallization; Transcrystals; Isotactic polypropylene; Carbon nanotubes; Graphene; Fiber; | |
DOI : 10.1016/j.polymer.2016.03.055 | |
来源: Elsevier | |
【 摘 要 】
A comparative study on interfacial crystallization of isotactic polypropylene (iPP) surrounding macroscopic carbon nanotube and graphene fibers has been carried out in single fiber polymer composites by means of in situ polarized optical microscope, scanning electron microscope and X-ray diffraction. Ordered interfacial microstructures of iPP nucleate on both nanocarbon fibers in the form of a transcrystalline interphase. Nanotube fibers tend to promote negative birefringence transcrystals whereas graphene fibers induce positive birefringence transcrystals. The microstructures of transcrystals are strongly dependent on the thermal history and the double-layered transcrystals consisting of a negative inner layer and a positive outer layer occur under certain conditions. Transcrystallization kinetics has been studied and the Lauritzen-Hoffman theory of heterogeneous nucleation used to analyze the dynamic crystallization process. While the fold surface energy of iPP transcrystals surrounding both nanocarbon fibers shows little difference, the nanotube fiber promotes shorter induction time than the graphene fiber. Thermal resistance test demonstrates that the ordered interfacial microstructures possess higher melting temperature in the nanotube fiber composites than those in the graphene fiber composites. Under appropriate conditions, the beta-form transcrystals of iPP are observed. The amount of the beta-form iPP surrounding the nanotube fiber is much higher than that surrounding the graphene fiber. A theoretical model is proposed to interpret the difference between the nanotube and graphene fiber composites and the mechanisms behind its influence on interfacial crystallization. (C) 2016 Elsevier Ltd. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_polymer_2016_03_055.pdf | 6085KB | download |