学位论文详细信息
Understanding the process-structure-property relationship in biodegradable polymer nanocomposite films
Nanocomposite;Polylactic acid;Exfoliated graphite platelets;Carbon nanotubes;Cellulose nanocrystals
Sullivan, Erin M. ; Kalaitzidou, Kyriaki Wang, Ben Materials Science and Engineering Gerhardt, Rosario A. Moon, Robert J. Shofner, Meisha L. ; Kalaitzidou, Kyriaki
University:Georgia Institute of Technology
Department:Materials Science and Engineering
关键词: Nanocomposite;    Polylactic acid;    Exfoliated graphite platelets;    Carbon nanotubes;    Cellulose nanocrystals;   
Others  :  https://smartech.gatech.edu/bitstream/1853/54428/1/SULLIVAN-DISSERTATION-2015.pdf
美国|英语
来源: SMARTech Repository
PDF
【 摘 要 】

The focus of this study was to explore process-structure-property relationships in biodegradable polymer nanocomposite films in order to eliminate the commonly used trial and error approach to materials design and to enable manufacturing of composites with tailored properties for targeted applications. The nanofiller type and concentration, manufacturing method and compounding technique, as well as processing conditions were systematically altered in order to study the process-structure-property relationships. Polylactic acid (PLA) was used as the polymer and exfoliated graphite nanoplatelets (GNP), carbon nanotubes (CNT), and cellulose nanocrystals (CNC) were used as reinforcement. The nanocomposite films were fabricated using three different methods: 1) melt compounding and melt fiber spinning followed by compression molding, 2) solution mixing and solvent casting, and 3) solution mixing and electrospinning followed by compression molding. Furthermore, the physical properties of the polymer, namely the crystallization characteristics were altered by using two different cooling rates during compression molding. The electrical response of the composite films was examined using impedance spectroscopy and it was shown that by altering the physical properties of the insulating polymer matrix, increasing degree of crystallinity, the percolation threshold of the GNP/PLA films is significantly reduced. Additionally, design of experiments was used to examine the influence of nanofiller type (CNT versus GNP), nanofiller content, and processing conditions (cooling rate during compression molding) on the elastic modulus of the composite films and it was concluded that the cooling rate is the primary factor influencing the elastic modulus of both melt compounded CNT/PLA and GNP/PLA films. Furthermore, the effect of nanofiller geometry and compounding method was examined and it was shown that the high nanofiller aspect ratio in the CNT/PLA films led to decreased percolation threshold compared to the GNP/PLA films. The melt compounded GNP/PLA films displayed a lower percolation threshold than the solution cast GNP/PLA films most likely due to the more homogeneous distribution and dispersion of GNP in the solution cast films. Fully biodegradable and biorenewable nanocomposite films were fabricated and examined through the incorporation of CNC in PLA. Through the addition of CNC, the degree of crystallinity of the matrix was significantly increased. Focusing the design space through investigation of process-structure-property relationships in PLA nanocomposites, can help facilitate nanocomposites with tailored properties for targeted applications.

【 预 览 】
附件列表
Files Size Format View
Understanding the process-structure-property relationship in biodegradable polymer nanocomposite films 5241KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:13次