期刊论文详细信息
POLYMER 卷:54
Electrospinning covalently cross-linking biocompatible hydrogelators
Article
Schultz, Kelly M.1,2  Campo-Deano, Laura3  Baldwin, Aaron D.4  Kiick, Kristi L.4  Clasen, Christian3  Furst, Eric M.1,2 
[1] Univ Delaware, Dept Chem & Biomol Engn, Newark, DE 19716 USA
[2] Univ Delaware, Ctr Mol & Engn Thermodynam, Newark, DE 19716 USA
[3] Univ Louvain, Dept Chem Engn, B-3001 Louvain, Belgium
[4] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA
关键词: Microrheology;    Electrospinning;    Hydrogels;   
DOI  :  10.1016/j.polymer.2012.09.060
来源: Elsevier
PDF
【 摘 要 】

Many hydrogel materials of interest are homogeneous on the micrometer scale. Electrospinning, the formation of sub-micrometer to micrometer diameter fibers by a jet of fluid formed under an electric field, is one process being explored to create rich microstructures. However, electrospinning a hydrogel system as it reacts requires an understanding of the gelation kinetics and corresponding rheology near the liquid-solid transition. In this study, we correlate the structure of electrospun fibers of a covalently cross-linked hydrogelator with the corresponding gelation transition and kinetics. Polyethylene oxide (PEO) is used as a carrier polymer in a chemically cross-linking poly(ethylene glycol)-high molecular weight heparin (PEG-HMWH) hydrogel. Using measurements of gelation kinetics from multiple particle tracking microrheology (MPT), we correlate the material rheology with the formation of stable fibers. An equilibrated, cross-linked hydrogel is also spun and the PEO is dissolved. In both cases, microstructural features of the electrospun fibers are retained, confirming the covalent nature of the network. The ability to spin fibers of a cross-linking hydrogel system ultimately enables the engineering of materials and microstructural length scales suitable for biological applications. (C) 2012 Elsevier Ltd. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_polymer_2012_09_060.pdf 1822KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次