RENEWABLE ENERGY | 卷:63 |
Planning tidal stream turbine array layouts using a coupled blade element momentum - computational fluid dynamics model | |
Article | |
Malki, Rami1  Masters, Ian1  Williams, Alison J.1  Croft, T. Nick1  | |
[1] Swansea Univ, Coll Engn, Marine Energy Res Grp, Swansea, W Glam, Wales | |
关键词: Tidal stream; Marine current; Turbine array; CFD; Blade element momentum theory; | |
DOI : 10.1016/j.renene.2013.08.039 | |
来源: Elsevier | |
【 摘 要 】
A coupled blade element momentum computational fluid dynamics (BEM-CFD) model is used to conduct simulations of groups of tidal stream turbines. Simulations of single, double and triple turbine arrangements are conducted first to evaluate the effects of turbine spacing and arrangement on flow dynamics and rotor performance. Wake recovery to free-stream conditions was independent of flow velocity. Trends identified include significant improvement of performance for the downstream rotor where longitudinal spacing between a longitudinally aligned pair is maximised, whereas maintaining a lateral spacing between two devices of two diameters or greater increases the potential of benefitting from flow acceleration between them. This could significantly improve the performance of a downstream device, particularly where the longitudinal spacing between the two rows is two diameters or less. Due to the computational efficiency of this modelling approach, particularly when compared to transient computational fluid dynamics simulations of rotating blades, the BEM-CFD model can simulate larger numbers of devices. An example of how an understanding of the hydrodynamics around devices is affected by rotor spacing can be used to optimise the performance of a 14 turbine array is presented. Compared to a regular staggered configuration, the total power output of the array was increased by over 10%. (C) 2013 Elsevier Ltd. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_renene_2013_08_039.pdf | 1765KB | download |