学位论文详细信息
Periodic flow physics in porous media of regenerative cryocoolers
Regenerator;ErPr;Nusselt;Porous media;Pore level;Periodic flow;Oscillatory flow;Darcy permeability;Forchheimer;Hydrodynamic;Thermal dispersion;Conjugate;Heat transfer;CFD;Pulse tube;Cryocooler;Cryogenics;Physics;Rare-Earth;Steady flow
Pathak, Mihir Gaurang ; Ghiaasiaan, S. Mostafa Mechanical Engineering Desai, Prateen Walker, Mitchell Wilhite, Alan Haynes, Comas Radebaugh, Ray ; Ghiaasiaan, S. Mostafa
University:Georgia Institute of Technology
Department:Mechanical Engineering
关键词: Regenerator;    ErPr;    Nusselt;    Porous media;    Pore level;    Periodic flow;    Oscillatory flow;    Darcy permeability;    Forchheimer;    Hydrodynamic;    Thermal dispersion;    Conjugate;    Heat transfer;    CFD;    Pulse tube;    Cryocooler;    Cryogenics;    Physics;    Rare-Earth;    Steady flow;   
Others  :  https://smartech.gatech.edu/bitstream/1853/49056/1/PATHAK-DISSERTATION-2013.pdf
美国|英语
来源: SMARTech Repository
PDF
【 摘 要 】

Pulse tube cryocoolers (PTC) are a class of rugged and high-endurance refrigeration systems that operate without moving parts at their low temperature ends, and are capable of reaching temperatures down to and below 123 K. PTCs are particularly suitable for applications in space, guiding systems, cryosurgery, medicine preservation, superconducting electronics, magnetic resonance imaging, weather observation, and liquefaction of gases. Applications of these cryocoolers span across many industries including defense, aerospace, biomedical, energy, and high tech. Among the challenges facing the PTC research community is the improvement of system efficiency, which is a direct function of the regenerator component performance. A PTC implements the theory of oscillatory compression and expansion of the gas within a closed volume to achieve desired refrigeration. An important deficiency with respect to the state of art models dealing with PTCs is the limited understanding of the hydrodynamic and thermal transport parameters associated with periodic flow of a cryogenic fluid in micro-porous structures. In view of the above, the goals of this investigation include: 1) experimentally measuring and correlating the steady and periodic flow Darcy permeability and Forchheimer’s inertial hydrodynamic parameters for available rare-Earth ErPr regenerator filler; 2) employing a CFD-assisted methodology for the unambiguous quantification of the Darcy permeability and Forchheimer’s inertial hydrodynamic parameters, based on experimentally measured steady and periodic flow pressure drops in porous structures representing recently developed regenerator fillers; and 3) performing a direct numerical pore-level investigation for steady and periodic flows in a generic porous medium in order to elucidate the flow and transport processes, and quantify the solid-fluid hydrodynamic and heat transfer parameters. These hydrodynamic resistances parameters were found to be significantly different for steady and oscillatory flows.

【 预 览 】
附件列表
Files Size Format View
Periodic flow physics in porous media of regenerative cryocoolers 6822KB PDF download
  文献评价指标  
  下载次数:26次 浏览次数:41次