RENEWABLE ENERGY | 卷:132 |
Improving spectral modification for applications in solar cells: A review | |
Review | |
Day, Joseph1  Senthilarasu, S.1  Mallick, Tapas K.1  | |
[1] Univ Exeter, Environm & Sustainabil Inst, Penryn Campus, Penryn TR10 9FE, Cornwall, England | |
关键词: Downconversion; Efficiency; Luminescent downshifting; Nanostructures; Solar cells; Upconversion; | |
DOI : 10.1016/j.renene.2018.07.101 | |
来源: Elsevier | |
【 摘 要 】
The spectral mismatch between solar cells and incident radiation is a fundamental factor limiting their efficiencies. There exist materials and luminescent processes which can modify the incident sunlight's properties to better suit the cell's optimal absorption regions. This makes for an interesting area of research and promising technique for enhancing the efficiency of solar cells which is important for environmental reasons. It is intended for this review to provide the reader with historical and up-to-date developments of the application of spectral modification to solar cells and contribute to growing its impact on real-world PV devices. We concisely outline the underlying principles of three spectral modification processes: upconversion (UC), downconversion (DC) and luminescent downshifting (LDS). For each section we present up to date experimental results for applications to a range of solar PV technologies and discuss their drawbacks. With particular focus on UC, we then review how nano-structures or integrated optics might overcome these problems. Finally, we discuss practical challenges associated with advancing this approach for commercialisation and opportunities spectral modification presents; namely where future research should focus and via a cost analysis with a simple formula that can be used to determine financial viability for the deployment of this technology. (C) 2018 The Authors. Published by Elsevier Ltd.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_renene_2018_07_101.pdf | 1962KB | download |