期刊论文详细信息
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING 卷:776
The sensitivity of the microstructure and properties to the peak temperature in an ultrafast heat treated low carbon-steel
Article
Valdes-Tabernero, M. A.1  Kumar, A.2  Petrov, R. H.2,3  Monclus, M. A.1  Molina-Aldareguia, J. M.1  Sabirov, I1 
[1] IMDEA Mat Inst, Calle Eric Kandel 2, Madrid 28906, Spain
[2] Delft Univ Technol, Dept Mat Sci & Engn, Mekelweg 2, NL-2628 CD Delft, Netherlands
[3] Univ Ghent, Dept Elect Energy Met Mech Construct & Syst, Technol Pk 46, B-9052 Ghent, Belgium
关键词: Metals and alloys;    Ultrafast heating;    Phase transitions;    Scanning electron microscopy;    SEM;    Nanoindentation;   
DOI  :  10.1016/j.msea.2020.138999
来源: Elsevier
PDF
【 摘 要 】

In this work, we investigate the sensitivity of the microstructure and mechanical properties of an ultrafast heat treated low carbon-steel to the peak temperature. In all studied cases, the steel was heated within the intercritical temperature range (i.e. between the A(C1)and A(C3) temperatures). Both the peak temperature and soaking time were varied, and their effect on the size, the fraction of individual microstructural constituents and their tensile mechanical response were investigated. It is shown that the increasing peak temperature and soaking time promote austenite formation and recrystallization processes in the ferritic matrix. The highest nanohardness is shown by martensitic grains, while recovered ferrite demonstrated slightly higher nanohardness compared to recrystallized ferrite. The applied heat treatment parameters have a strong effect on the nanohardness of martensite, whereas the nanohardness of ferrite microconstituents is not sensitive to variations of peak temperature and soaking time. The non-recrystallized ferrite is harder than its recrystallized counterpart due to the higher dislocation density of the former. Increasing peak temperatures promote strengthening in the material at the expense of its ductility mainly due to increased martensite fraction. The steel demonstrates enhanced strain hardening ability independently of the peak temperature. Analysis of the experimental results showed that the industrial processing window of +/- 10 degrees C may lead to some heterogeneity of the local microstructure in the ultrafast heat treated sheets. However, the latter should not have any negative effect on the overall mechanical behavior of the ultrafast heat treated steel sheets on the macro-scale.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_msea_2020_138999.pdf 2977KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:1次