NEUROSCIENCE LETTERS | 卷:609 |
Foundational dendritic processing that is independent of the cell type-specific structure in model primary neurons | |
Article | |
Kim, Hojeong1,2  Heckman, C. J.2,3  | |
[1] DGIST, Div IoT Robot Convergence Res, Daegu 711873, Gyeongbuk, South Korea | |
[2] Northwestern Univ Med, Dept Physiol, Chicago, IL USA | |
[3] Northwestern Univ, Dept Phys Med & Rehabil & Phys Therapy & Human Mo, Feinberg Sch Med, Chicago, IL 60611 USA | |
关键词: Primary neurons; Dendritic structure; Signal propagation; Dendritic excitability; Reduced modelling; | |
DOI : 10.1016/j.neulet.2015.10.017 | |
来源: Elsevier | |
【 摘 要 】
It has long been known that primary neurons in the brain and spinal cord exhibit very distinctive dendritic structures. However, it remains unclear whether dendritic processing for signal propagation and channel activation over dendrites is a function of the cell type-specific dendritic structure. By applying an extended analysis of signal attenuation for the physiological distributions of synaptic inputs and active channels on dendritic branches, we first demonstrate that regardless of their specific structure, all anatomically reconstructed models of primary neurons display a similar pattern of directional signal attenuation and locational channel activation over their dendrites. Then, using a novel modeling approach that allows direct comparison of the anatomically reconstructed primary neurons with their reduced models that exclusively retain anatomical dendritic signaling without being associated with structural specificity, we show that the reduced model can accurately predict dendritic excitability of the anatomical model in both passive and active mode. These results indicate that the directional signaling, locational excitability and their relationship are foundational features of dendritic processing that are independent of the cell type-specific structure across primary neurons. (C) 2015 Elsevier Ireland Ltd. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_neulet_2015_10_017.pdf | 891KB | download |