BMC Neuroscience | |
New highly sensitive rodent and human tests for soluble amyloid precursor protein alpha quantification: preclinical and clinical applications in Alzheimer’s disease | |
Bernadette Allinquant5  Jacques Hugon4  Jean-Louis Laplanche2  Frédéric Calon1  Fanchon Bourasset2  Julien Dumurgier3  Claire Paquet4  Stéphanie Chasseigneaux2  Katell Peoc’h2  Christiane Rose5  | |
[1] Faculty of Pharmacy, Laval University, Quebec, Canada;Service de Biochimie et de Biologie moléculaire, Hôpital Lariboisière, AP-HP, Paris, France; Biologie cellulaire, Faculté de Pharmacie, Université Paris Descartes, Paris, France;Centre Mémoire de Ressources et de Recherche Paris Nord Ile de France, Groupe Hospitalier Lariboisière Fernand Widal Saint-Louis, Université Paris VII, Paris, France;INSERM U839, Institut du Fer à Moulin, Paris, France;INSERM UMR 894, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France | |
关键词: Sensitivity; Primary neurons; Cerebrospinal fluid; Human; Rodent; Homogeneous time-resolved fluorescence; Soluble amyloid precursor protein alpha; Alzheimer’s disease; | |
Others : 1170629 DOI : 10.1186/1471-2202-13-84 |
|
received in 2012-05-16, accepted in 2012-07-23, 发布年份 2012 | |
【 摘 要 】
Background
Amyloid precursor protein (APP), a key molecule in Alzheimer’s disease (AD), is metabolized in two alternative cleavages, generating either the amyloidogenic peptides involved in AD pathology or the soluble form of APP (sAPPα). The level of amyloidogenic peptides in human cerebrospinal fluid (CSF) is considered to be a biomarker of AD, whereas the level of sAPPα in CSF as a biomarker has not been clearly established. sAPPα has neurotrophic and neuroprotective properties. Stimulating its formation and secretion is a promising therapeutic target in AD research. To this end, very sensitive tests for preclinical and clinical research are required.
Methods
The tests are based on homogenous time-resolved fluorescence and require no washing steps.
Results
We describe two new rapid and sensitive tests for quantifying mouse and human sAPPα. These 20 μl-volume tests quantify the levels of: i) endogenous mouse sAPPα in the conditioned medium of mouse neuron primary cultures, as well as in the CSF of wild-type mice, ii) human sAPPα in the CSF of AD mouse models, and iii) human sAPPα in the CSF of AD and non-AD patients. These tests require only 5 μl of conditioned medium from 5 × 104 mouse primary neurons, 1 μl of CSF from wild-type and transgenic mice, and 0.5 μl of human CSF.
Conclusions
The high sensitivity of the mouse sAPPα test will allow high-throughput investigations of molecules capable of increasing the secretion of endogenous sAPPα in primary neurons, as well as the in vivo validation of molecules of interest through the quantification of sAPPα in the CSF of treated wild-type mice. Active molecules could then be tested in the AD mouse models by quantifying human sAPPα in the CSF through the progression of the disease. Finally, the human sAPPα test could strengthen the biological diagnosis of AD in large clinical investigations. Taken together, these new tests have a wide field of applications in preclinical and clinical studies.
【 授权许可】
2012 Rose et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150417023031829.pdf | 569KB | download | |
Figure 6. | 31KB | Image | download |
Figure 5. | 30KB | Image | download |
Figure 4. | 36KB | Image | download |
Figure 3. | 45KB | Image | download |
Figure 2. | 59KB | Image | download |
Figure 1. | 14KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Duyckaerts C, Delatour B, Potier MC: Classification and basic pathology of Alzheimer disease. Acta Neuropathol 2009, 118(1):5-36.
- [2]McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, et al.: The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer Dement 2011, 7(3):263-269.
- [3]Blennow K, Hampel H: CSF markers for incipient Alzheimer's disease. Lancet Neurol 2003, 2(10):605-613.
- [4]Ibach B, Binder H, Dragon M, Poljansky S, Haen E, Schmitz E, Koch H, Putzhammer A, Kluenemann H, Wieland W, et al.: Cerebrospinal fluid tau and beta-amyloid in Alzheimer patients, disease controls and an age-matched random sample. Neurobiol Aging 2006, 27(9):1202-1211.
- [5]Blennow K, Hampel H, Weiner M, Zetterberg H: Cerebrospinal Fluid and Plasma Biomarkers in Alzheimer Disease. Nat Rev Neurol 2010, 6:131-144.
- [6]Mattsson N, Rosen E, Hansson O, Andreasen N, Parnetti L, Jonsson M, Herukka SK, van der Flier WM, Blankenstein MA, Ewers M, et al.: Age and diagnostic performance of Alzheimer disease CSF biomarkers. Neurology 2012, 78(7):468-476.
- [7]Esch FS, Keim PS, Beattie EC, Blacher RW, Culwell AR, Olterstof T, McClure D, Ward PJ: Cleavage of Amyloid beta peptide during constitutive processing of its precursor. Science 1992, 248(4959):1122-1124.
- [8]Anderson JP, Esch DS, Keim PS, Sambamurti K, Lieberburg I, Robakis NK: Exact cleavage site of Alzheimer amyloid precursor in neuronal PC-12. Neurosci Lett 1991, 128(1):126-128.
- [9]Wang R, Meschia JF, Cotter RJ, Sisodia SS: Secretion of the beta/A4 Amyloid Precursor Protein. J Biol Chem 1991, 266(25):16960-16964.
- [10]Flammang B, Pardossi-Piquard R, Sevalle J, Debayle D, Dabert-Gay AS, Thevenet A, Lauritzen I, Checler F: Evidence that the amyloid-beta protein precursor intracellular domain, AICD, derives from beta-secretase-generated C-terminal fragment. J Alzheimer Dis 2012, 30(1):145-153.
- [11]Portelius E, Price E, Brinkmalm G, Stiteler M, Olsson M, Persson R, Westman-Brinkmalm A, Zetterberg H, Simon AJ, Blennow K: A novel pathway for amyloid precursor protein processing. Neurobiol Aging 2011, 32(6):1090-1098.
- [12]Tian Y, Crump CJ, Li YM: Dual role of alpha-secretase cleavage in the regulation of gamma-secretase activity for amyloid production. J Biol Chem 2010, 285(42):32549-32556.
- [13]Mattson MP: Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev 1997, 77(4):1081-1132.
- [14]Chasseigneaux S, Allinquant B: Functions of Abeta, sAPPalpha and sAPPbeta: similarities and differences. J Neurochem 2012, 120(Suppl 1):99-108.
- [15]Caille I, Allinquant B, Dupont E, Bouillot C, Langer A, Müller U, Prochiantz A: Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone. Development 2004, 131(9):2173-2181.
- [16]Taylor CJ, Ireland DR, Ballagh I, Bourne K, Marechal NM, Turner PR, Bilkey DK, Tate WP, Abraham WC: Endogenous secreted amyloid precursor protein-alpha regulates hippocampal NMDA receptor function, long-term potentiation and spatial memory. Neurobiol Dis 2008, 31(2):250-260.
- [17]Lewczuk P, Kamrowski-Kruck H, Peters O, Heuser I, Jessen F, Popp J, Burger K, Hampel H, Frolich L, Wolf S, et al.: Soluble amyloid precursor proteins in the cerebrospinal fluid as novel potential biomarkers of Alzheimer's disease: a multicenter study. Mol Psychiatr 2010, 15(2):138-145.
- [18]Lewczuk P, Popp J, Lelental N, Kolsch H, Maier W, Kornhuber J, Jessen F: Cerebrospinal fluid soluble amyloid-beta protein precursor as a potential novel biomarkers of Alzheimer's disease. J Alzheimer Dis 2012, 28(1):119-125.
- [19]Lannfelt L, Basun H, Wahlund LO, Rowe BA, Wagner SL: Decreased alpha-secretase-cleaved amyloid precursor protein as a diagnostic marker for Alzheimer's disease. Nat Med 1995, 1(8):829-832.
- [20]Almkvist O, Basun H, Wagner SL, Rowe BA, Wahlund LO, Lannfelt L: Cerebrospinal fluid levels of alpha-secretase-cleaved soluble amyloid precursor protein mirror cognition in a Swedish family with Alzheimer disease and a gene mutation. Arch Neurol 1997, 54(5):641-644.
- [21]Sennvik K, Fastbom J, Blomberg M, Wahlund LO, Winblad B, Benedikz E: Levels of alpha- and beta-secretase cleaved amyloid precursor protein in the cerebrospinal fluid of Alzheimer's disease patients. Neurosci Lett 2000, 278(3):169-172.
- [22]Colciaghi F, Borroni B, Pastorino L, Marcello E, Zimmermann M, Cattabeni F, Padovani A, Di Luca M: [alpha]-Secretase ADAM10 as well as [alpha]APPs is reduced in platelets and CSF of Alzheimer disease patients. Mol Med 2002, 8(2):67-74.
- [23]Olsson A, Hoglund K, Sjogren M, Andreasen N, Minthon L, Lannfelt L, Buerger K, Moller HJ, Hampel H, Davidsson P, et al.: Measurement of alpha- and beta-secretase cleaved amyloid precursor protein in cerebrospinal fluid from Alzheimer patients. Exp Neurol 2003, 183(1):74-80.
- [24]Perneczky R, Tsolakidou A, Arnold A, Diehl-Schmid J, Grimmer T, Forstl H, Kurz A, Alexopoulos P: CSF soluble amyloid precursor proteins in the diagnosis of incipient Alzheimer disease. Neurology 2011, 77(1):35-38.
- [25]Gabelle A, Roche S, Geny C, Bennys K, Labauge P, Tholance Y, Quadrio I, Tiers L, Gor B, Chaulet C, et al.: Correlations between soluble alpha/beta forms of amyloid precursor protein and Abeta38, 40, and 42 in human cerebrospinal fluid. Brain Res 2010, 1357:175-183.
- [26]Szekeres PG, Leong K, Day TA, Kingston AE, Karran EH: Development of homogeneous 384-well high-throughput screening assays for Abeta1-40 and Abeta1-42 using AlphaScreen technology. J Biomol Screen 2008, 13(2):101-111.
- [27]De Strooper B, Simons M, Multhaup G, Van Leuven F, Beyreuther K, Dotti CG: Production of intracellular amyloid-containing fragments in hippocampal neurons expressing human amyloid precursor protein and protection against amyloidogenesis by subtle amino acid substitutions in the rodent sequence. EMBO J 1995, 14(20):4932-4938.
- [28]Perret-Liaudet A, Pelpel M, Tholance Y, Dumont B, Vanderstichele H, Zorzi W, Elmoualij B, Schraen S, Moreaud O, Gabelle A, et al.: Cerebrospinal Fluid Collection Tubes: A Critical Issue for Alzheimer Disease Diagnosis. Clin Chem 2012, 58(4):787-789.
- [29]Pica-Mendez AM, Tanen M, Dallob A, Tanaka W, Laterza OF: Nonspecific binding of Abeta42 to polypropylene tubes and the effect of Tween-20. Clin Chim Acta 2010, 411(21–22):1833.
- [30]Paquet C, Latour F, Saulnier I, Hanon O: [Multicenter study on lumbar puncture indication, clinical practice and feasibility]. Rev Neurol Paris 2012, 168(1):28-32.
- [31]Hung AY, Haass C, Nitsch RM, Qiu WQ, Citron M, Wurtman RJ, Growdon JH, Selkoe DJ: Activation of protein kinase C inhibits cellular production of the amyloid beta-protein. J Biol Chem 1993, 268(31):22959-22962.
- [32]Buxbaum JD, Liu KN, Luo Y, Slack JL, Stocking KL, Peschon JJ, Johnson RS, Castner BJ, Cerretti DP, Black RA: Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor. J Biol Chem 1998, 273(43):27765-27767.
- [33]Postina R: Activation of alpha-secretase cleavage. J Neurochem 2012, 120(Suppl 1):46-54.
- [34]Kojro E, Postina R, Buro C, Meiringer C, Gehrig-Burger K, Fahrenholz F: The neuropeptide PACAP promotes the alpha-secretase pathway for processing the Alzheimer amyloid precursor protein. FASEB J 2006, 20(3):512-514.
- [35]Levites Y, Amit T, Mandel S, Youdim MB: Neuroprotection and neurorescue against Abeta toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (−)-epigallocatechin-3-gallate. FASEB J 2003, 17(8):952-954.
- [36]Obregon DF, Rezai-Zadeh K, Bai Y, Sun N, Hou H, Ehrhart J, Zeng J, Mori T, Arendash GW, Shytle D, et al.: ADAM10 activation is required for green tea (−)-epigallocatechin-3-gallate-induced alpha-secretase cleavage of amyloid precursor protein. J Biol Chem 2006, 281(24):16419-16427.
- [37]Caporaso GL, Gandy SE, Buxbaum JD, Ramabhadran TV, Greengard P: Protein phosphorylation regulates secretion of Alzheimer beta/A4 amyloid precursor protein. Proc Natl Acad Sci U S A 1992, 89(7):3055-3059.
- [38]Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM: Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 2003, 39(3):409-421.
- [39]Simons M, de Strooper B, Multhaup G, Tienari PJ, Dotti CG, Beyreuther K: Amyloidogenic processing of the human amyloid precursor protein in primary cultures of rat hippocampal neurons. J Neurosci 1996, 16(3):899-908.
- [40]Chasseigneaux S, Dinc L, Rose C, Chabret C, Coulpier F, Topilko P, Mauger G, Allinquant B: Secreted amyloid precursor protein beta and secreted amyloid precursor protein alpha induce axon outgrowth in vitro through Egr1 signaling pathway. PLoS One 2011, 6(1):e16301.
- [41]Lafont F, Rouget M, Rousselet A, Valenza C, Prochiantz A: Specific responses of axons and dendrites to cytoskeleton perturbations: an in vitro study. J Cell Sci 1993, 104(Pt2):433-443.
- [42]McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM: Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984, 34(7):939-944.
- [43]Fischer DF, Hol EM, Hobo B, Van Leeuwen FW: Alzheimer-associated APP+1 transgenic mice: Frameshift β-amyloid precursor protein is secreted in cerebrospinal fluid without inducing neuropathology. Neurobiol Aging 2006, 27(10):1445-1450.